Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimaeq Structured version   Visualization version   Unicode version

Theorem funimaeq 39461
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimaeq.x  |-  F/ x ph
funimaeq.f  |-  ( ph  ->  Fun  F )
funimaeq.g  |-  ( ph  ->  Fun  G )
funimaeq.a  |-  ( ph  ->  A  C_  dom  F )
funimaeq.d  |-  ( ph  ->  A  C_  dom  G )
funimaeq.e  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
Assertion
Ref Expression
funimaeq  |-  ( ph  ->  ( F " A
)  =  ( G
" A ) )
Distinct variable groups:    x, A    x, F    x, G
Allowed substitution hint:    ph( x)

Proof of Theorem funimaeq
StepHypRef Expression
1 funimaeq.x . . . 4  |-  F/ x ph
2 funimaeq.e . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( G `  x ) )
3 funimaeq.g . . . . . . . 8  |-  ( ph  ->  Fun  G )
43funfnd 5919 . . . . . . 7  |-  ( ph  ->  G  Fn  dom  G
)
54adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  G  Fn  dom  G )
6 funimaeq.d . . . . . . 7  |-  ( ph  ->  A  C_  dom  G )
76adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A  C_ 
dom  G )
8 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
9 fnfvima 6496 . . . . . 6  |-  ( ( G  Fn  dom  G  /\  A  C_  dom  G  /\  x  e.  A
)  ->  ( G `  x )  e.  ( G " A ) )
105, 7, 8, 9syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  ( G " A
) )
112, 10eqeltrd 2701 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  ( G " A
) )
121, 11ralrimia 39315 . . 3  |-  ( ph  ->  A. x  e.  A  ( F `  x )  e.  ( G " A ) )
13 funimaeq.f . . . 4  |-  ( ph  ->  Fun  F )
14 funimaeq.a . . . 4  |-  ( ph  ->  A  C_  dom  F )
15 funimass4 6247 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  ( G " A )  <->  A. x  e.  A  ( F `  x )  e.  ( G " A ) ) )
1613, 14, 15syl2anc 693 . . 3  |-  ( ph  ->  ( ( F " A )  C_  ( G " A )  <->  A. x  e.  A  ( F `  x )  e.  ( G " A ) ) )
1712, 16mpbird 247 . 2  |-  ( ph  ->  ( F " A
)  C_  ( G " A ) )
182eqcomd 2628 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  =  ( F `  x ) )
1913funfnd 5919 . . . . . . 7  |-  ( ph  ->  F  Fn  dom  F
)
2019adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  F  Fn  dom  F )
2114adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A  C_ 
dom  F )
22 fnfvima 6496 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  C_  dom  F  /\  x  e.  A
)  ->  ( F `  x )  e.  ( F " A ) )
2320, 21, 8, 22syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  ( F " A
) )
2418, 23eqeltrd 2701 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( G `  x )  e.  ( F " A
) )
251, 24ralrimia 39315 . . 3  |-  ( ph  ->  A. x  e.  A  ( G `  x )  e.  ( F " A ) )
26 funimass4 6247 . . . 4  |-  ( ( Fun  G  /\  A  C_ 
dom  G )  -> 
( ( G " A )  C_  ( F " A )  <->  A. x  e.  A  ( G `  x )  e.  ( F " A ) ) )
273, 6, 26syl2anc 693 . . 3  |-  ( ph  ->  ( ( G " A )  C_  ( F " A )  <->  A. x  e.  A  ( G `  x )  e.  ( F " A ) ) )
2825, 27mpbird 247 . 2  |-  ( ph  ->  ( G " A
)  C_  ( F " A ) )
2917, 28eqssd 3620 1  |-  ( ph  ->  ( F " A
)  =  ( G
" A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   A.wral 2912    C_ wss 3574   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator