![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass4 | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass4 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3591 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) | |
2 | eqcom 2629 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
3 | ssel 3597 | . . . . . . . . . . . 12 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
4 | funbrfvb 6238 | . . . . . . . . . . . . 13 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
5 | 4 | ex 450 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
6 | 3, 5 | syl9 77 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
7 | 6 | imp31 448 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
8 | 2, 7 | syl5bb 272 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
9 | 8 | rexbidva 3049 | . . . . . . . 8 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
10 | vex 3203 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
11 | 10 | elima 5471 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
12 | 9, 11 | syl6rbbr 279 | . . . . . . 7 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
13 | 12 | imbi1d 331 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
14 | r19.23v 3023 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
15 | 13, 14 | syl6bbr 278 | . . . . 5 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
16 | 15 | albidv 1849 | . . . 4 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
17 | ralcom4 3224 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
18 | fvex 6201 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
19 | eleq1 2689 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) | |
20 | 18, 19 | ceqsalv 3233 | . . . . . 6 ⊢ (∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (𝐹‘𝑥) ∈ 𝐵) |
21 | 20 | ralbii 2980 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
22 | 17, 21 | bitr3i 266 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
23 | 16, 22 | syl6bb 276 | . . 3 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
24 | 1, 23 | syl5bb 272 | . 2 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
25 | 24 | ancoms 469 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 dom cdm 5114 “ cima 5117 Fun wfun 5882 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 |
This theorem is referenced by: funimass3 6333 funimass5 6334 funconstss 6335 funimassov 6811 fnwelem 7292 cnfcomlem 8596 dfac12lem2 8966 ackbij1b 9061 wunom 9542 phimullem 15484 frmdss2 17400 cntzmhm2 17772 dprd2da 18441 frlmsslsp 20135 1stckgenlem 21356 txcnp 21423 ptcnplem 21424 xkopt 21458 xkoinjcn 21490 tgqtop 21515 uzrest 21701 cnflf2 21807 lmflf 21809 txflf 21810 cnextcn 21871 ghmcnp 21918 ucnima 22085 metcnp 22346 tchcph 23036 ovolficcss 23238 opnmbllem 23369 ellimc2 23641 ellimc3 23643 deg1n0ima 23849 dvloglem 24394 logf1o2 24396 dchrghm 24981 upgrreslem 26196 umgrreslem 26197 xrofsup 29533 eulerpartlemd 30428 erdszelem2 31174 cvmlift3lem7 31307 mclsax 31466 filnetlem4 32376 poimir 33442 opnmbllem0 33445 cnres2 33562 funimaeq 39461 icccncfext 40100 |
Copyright terms: Public domain | W3C validator |