Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelima2 Structured version   Visualization version   Unicode version

Theorem fvelima2 39475
Description: Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
fvelima2  |-  ( ( F  Fn  A  /\  B  e.  ( F " C ) )  ->  E. x  e.  ( A  i^i  C ) ( F `  x )  =  B )
Distinct variable groups:    x, A    x, B    x, C    x, F

Proof of Theorem fvelima2
StepHypRef Expression
1 id 22 . . . 4  |-  ( B  e.  ( F " C )  ->  B  e.  ( F " C
) )
2 elimag 5470 . . . 4  |-  ( B  e.  ( F " C )  ->  ( B  e.  ( F " C )  <->  E. x  e.  C  x F B ) )
31, 2mpbid 222 . . 3  |-  ( B  e.  ( F " C )  ->  E. x  e.  C  x F B )
4 df-rex 2918 . . 3  |-  ( E. x  e.  C  x F B  <->  E. x
( x  e.  C  /\  x F B ) )
53, 4sylib 208 . 2  |-  ( B  e.  ( F " C )  ->  E. x
( x  e.  C  /\  x F B ) )
6 fnbr 5993 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x F B )  ->  x  e.  A )
76adantrl 752 . . . . . . . 8  |-  ( ( F  Fn  A  /\  ( x  e.  C  /\  x F B ) )  ->  x  e.  A )
8 simprl 794 . . . . . . . 8  |-  ( ( F  Fn  A  /\  ( x  e.  C  /\  x F B ) )  ->  x  e.  C )
97, 8elind 3798 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( x  e.  C  /\  x F B ) )  ->  x  e.  ( A  i^i  C ) )
10 fnfun 5988 . . . . . . . . 9  |-  ( F  Fn  A  ->  Fun  F )
11 funbrfv 6234 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( x F B  ->  ( F `
 x )  =  B ) )
1211imp 445 . . . . . . . . 9  |-  ( ( Fun  F  /\  x F B )  ->  ( F `  x )  =  B )
1310, 12sylan 488 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x F B )  -> 
( F `  x
)  =  B )
1413adantrl 752 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( x  e.  C  /\  x F B ) )  ->  ( F `  x )  =  B )
159, 14jca 554 . . . . . 6  |-  ( ( F  Fn  A  /\  ( x  e.  C  /\  x F B ) )  ->  ( x  e.  ( A  i^i  C
)  /\  ( F `  x )  =  B ) )
1615ex 450 . . . . 5  |-  ( F  Fn  A  ->  (
( x  e.  C  /\  x F B )  ->  ( x  e.  ( A  i^i  C
)  /\  ( F `  x )  =  B ) ) )
1716eximdv 1846 . . . 4  |-  ( F  Fn  A  ->  ( E. x ( x  e.  C  /\  x F B )  ->  E. x
( x  e.  ( A  i^i  C )  /\  ( F `  x )  =  B ) ) )
1817imp 445 . . 3  |-  ( ( F  Fn  A  /\  E. x ( x  e.  C  /\  x F B ) )  ->  E. x ( x  e.  ( A  i^i  C
)  /\  ( F `  x )  =  B ) )
19 df-rex 2918 . . 3  |-  ( E. x  e.  ( A  i^i  C ) ( F `  x )  =  B  <->  E. x
( x  e.  ( A  i^i  C )  /\  ( F `  x )  =  B ) )
2018, 19sylibr 224 . 2  |-  ( ( F  Fn  A  /\  E. x ( x  e.  C  /\  x F B ) )  ->  E. x  e.  ( A  i^i  C ) ( F `  x )  =  B )
215, 20sylan2 491 1  |-  ( ( F  Fn  A  /\  B  e.  ( F " C ) )  ->  E. x  e.  ( A  i^i  C ) ( F `  x )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913    i^i cin 3573   class class class wbr 4653   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  limsupresxr  39998  liminfresxr  39999  liminfvalxr  40015
  Copyright terms: Public domain W3C validator