MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpti Structured version   Visualization version   GIF version

Theorem fvmpti 6281
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptg.1 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptg.2 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmpti (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpti
StepHypRef Expression
1 fvmptg.1 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmptg.2 . . . 4 𝐹 = (𝑥𝐷𝐵)
31, 2fvmptg 6280 . . 3 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = 𝐶)
4 fvi 6255 . . . 4 (𝐶 ∈ V → ( I ‘𝐶) = 𝐶)
54adantl 482 . . 3 ((𝐴𝐷𝐶 ∈ V) → ( I ‘𝐶) = 𝐶)
63, 5eqtr4d 2659 . 2 ((𝐴𝐷𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
71eleq1d 2686 . . . . . . . 8 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
82dmmpt 5630 . . . . . . . 8 dom 𝐹 = {𝑥𝐷𝐵 ∈ V}
97, 8elrab2 3366 . . . . . . 7 (𝐴 ∈ dom 𝐹 ↔ (𝐴𝐷𝐶 ∈ V))
109baib 944 . . . . . 6 (𝐴𝐷 → (𝐴 ∈ dom 𝐹𝐶 ∈ V))
1110notbid 308 . . . . 5 (𝐴𝐷 → (¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V))
12 ndmfv 6218 . . . . 5 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
1311, 12syl6bir 244 . . . 4 (𝐴𝐷 → (¬ 𝐶 ∈ V → (𝐹𝐴) = ∅))
1413imp 445 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ∅)
15 fvprc 6185 . . . 4 𝐶 ∈ V → ( I ‘𝐶) = ∅)
1615adantl 482 . . 3 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → ( I ‘𝐶) = ∅)
1714, 16eqtr4d 2659 . 2 ((𝐴𝐷 ∧ ¬ 𝐶 ∈ V) → (𝐹𝐴) = ( I ‘𝐶))
186, 17pm2.61dan 832 1 (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729   I cid 5023  dom cdm 5114  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  fvmpt2i  6290  fvmptex  6294  sumeq2ii  14423  summolem3  14445  fsumf1o  14454  isumshft  14571  prodeq2ii  14643  prodmolem3  14663  fprodf1o  14676
  Copyright terms: Public domain W3C validator