MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   Unicode version

Theorem fvmptex 6294
Description: Express a function  F whose value  B may not always be a set in terms of another function  G for which sethood is guaranteed. (Note that  (  _I  `  B ) is just shorthand for  if ( B  e.  _V ,  B ,  (/) ), and it is always a set by fvex 6201.) Note also that these functions are not the same; wherever  B
( C ) is not a set,  C is not in the domain of  F (so it evaluates to the empty set), but  C is in the domain of  G, and  G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1  |-  F  =  ( x  e.  A  |->  B )
fvmptex.2  |-  G  =  ( x  e.  A  |->  (  _I  `  B
) )
Assertion
Ref Expression
fvmptex  |-  ( F `
 C )  =  ( G `  C
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    F( x)    G( x)

Proof of Theorem fvmptex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3536 . . . 4  |-  ( y  =  C  ->  [_ y  /  x ]_ B  = 
[_ C  /  x ]_ B )
2 fvmptex.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
3 nfcv 2764 . . . . . 6  |-  F/_ y B
4 nfcsb1v 3549 . . . . . 6  |-  F/_ x [_ y  /  x ]_ B
5 csbeq1a 3542 . . . . . 6  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
63, 4, 5cbvmpt 4749 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( y  e.  A  |->  [_ y  /  x ]_ B )
72, 6eqtri 2644 . . . 4  |-  F  =  ( y  e.  A  |-> 
[_ y  /  x ]_ B )
81, 7fvmpti 6281 . . 3  |-  ( C  e.  A  ->  ( F `  C )  =  (  _I  `  [_ C  /  x ]_ B ) )
91fveq2d 6195 . . . 4  |-  ( y  =  C  ->  (  _I  `  [_ y  /  x ]_ B )  =  (  _I  `  [_ C  /  x ]_ B ) )
10 fvmptex.2 . . . . 5  |-  G  =  ( x  e.  A  |->  (  _I  `  B
) )
11 nfcv 2764 . . . . . 6  |-  F/_ y
(  _I  `  B
)
12 nfcv 2764 . . . . . . 7  |-  F/_ x  _I
1312, 4nffv 6198 . . . . . 6  |-  F/_ x
(  _I  `  [_ y  /  x ]_ B )
145fveq2d 6195 . . . . . 6  |-  ( x  =  y  ->  (  _I  `  B )  =  (  _I  `  [_ y  /  x ]_ B ) )
1511, 13, 14cbvmpt 4749 . . . . 5  |-  ( x  e.  A  |->  (  _I 
`  B ) )  =  ( y  e.  A  |->  (  _I  `  [_ y  /  x ]_ B ) )
1610, 15eqtri 2644 . . . 4  |-  G  =  ( y  e.  A  |->  (  _I  `  [_ y  /  x ]_ B ) )
17 fvex 6201 . . . 4  |-  (  _I 
`  [_ C  /  x ]_ B )  e.  _V
189, 16, 17fvmpt 6282 . . 3  |-  ( C  e.  A  ->  ( G `  C )  =  (  _I  `  [_ C  /  x ]_ B ) )
198, 18eqtr4d 2659 . 2  |-  ( C  e.  A  ->  ( F `  C )  =  ( G `  C ) )
202dmmptss 5631 . . . . . 6  |-  dom  F  C_  A
2120sseli 3599 . . . . 5  |-  ( C  e.  dom  F  ->  C  e.  A )
2221con3i 150 . . . 4  |-  ( -.  C  e.  A  ->  -.  C  e.  dom  F )
23 ndmfv 6218 . . . 4  |-  ( -.  C  e.  dom  F  ->  ( F `  C
)  =  (/) )
2422, 23syl 17 . . 3  |-  ( -.  C  e.  A  -> 
( F `  C
)  =  (/) )
25 fvex 6201 . . . . . 6  |-  (  _I 
`  B )  e. 
_V
2625, 10dmmpti 6023 . . . . 5  |-  dom  G  =  A
2726eleq2i 2693 . . . 4  |-  ( C  e.  dom  G  <->  C  e.  A )
28 ndmfv 6218 . . . 4  |-  ( -.  C  e.  dom  G  ->  ( G `  C
)  =  (/) )
2927, 28sylnbir 321 . . 3  |-  ( -.  C  e.  A  -> 
( G `  C
)  =  (/) )
3024, 29eqtr4d 2659 . 2  |-  ( -.  C  e.  A  -> 
( F `  C
)  =  ( G `
 C ) )
3119, 30pm2.61i 176 1  |-  ( F `
 C )  =  ( G `  C
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   [_csb 3533   (/)c0 3915    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  fvmptnf  6302  sumeq2ii  14423  prodeq2ii  14643
  Copyright terms: Public domain W3C validator