MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2ii Structured version   Visualization version   GIF version

Theorem prodeq2ii 14643
Description: Equality theorem for product, with the class expressions 𝐵 and 𝐶 guarded by I to be always sets. (Contributed by Scott Fenton, 4-Dec-2017.)
Assertion
Ref Expression
prodeq2ii (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2ii
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzelz 11697 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑚) → 𝑛 ∈ ℤ)
21adantl 482 . . . . . . . . . . . 12 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ ℤ)
3 nfra1 2941 . . . . . . . . . . . . . . . . 17 𝑘𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶)
4 rsp 2929 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
54adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → ( I ‘𝐵) = ( I ‘𝐶)))
6 ifeq1 4090 . . . . . . . . . . . . . . . . . . . 20 (( I ‘𝐵) = ( I ‘𝐶) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
75, 6syl6 35 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → (𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))))
8 iffalse 4095 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = ( I ‘1))
9 iffalse 4095 . . . . . . . . . . . . . . . . . . . 20 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)) = ( I ‘1))
108, 9eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 𝑘𝐴 → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
117, 10pm2.61d1 171 . . . . . . . . . . . . . . . . . 18 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → if(𝑘𝐴, ( I ‘𝐵), ( I ‘1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1)))
12 fvif 6204 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐵, 1)) = if(𝑘𝐴, ( I ‘𝐵), ( I ‘1))
13 fvif 6204 . . . . . . . . . . . . . . . . . 18 ( I ‘if(𝑘𝐴, 𝐶, 1)) = if(𝑘𝐴, ( I ‘𝐶), ( I ‘1))
1411, 12, 133eqtr4g 2681 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑘 ∈ ℤ) → ( I ‘if(𝑘𝐴, 𝐵, 1)) = ( I ‘if(𝑘𝐴, 𝐶, 1)))
153, 14mpteq2da 4743 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1615adantr 481 . . . . . . . . . . . . . . 15 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
1716fveq1d 6193 . . . . . . . . . . . . . 14 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
1817adantlr 751 . . . . . . . . . . . . 13 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
19 eqid 2622 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
20 eqid 2622 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))
2119, 20fvmptex 6294 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥)
22 eqid 2622 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))
23 eqid 2622 . . . . . . . . . . . . . 14 (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))
2422, 23fvmptex 6294 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥)
2518, 21, 243eqtr4g 2681 . . . . . . . . . . . 12 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) ∧ 𝑥 ∈ (ℤ𝑛)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
262, 25seqfeq 12826 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
2726breq1d 4663 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦))
2827anbi2d 740 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
2928exbidv 1850 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑛 ∈ (ℤ𝑚)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3029rexbidva 3049 . . . . . . 7 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
3130adantr 481 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦)))
32 simpr 477 . . . . . . . 8 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → 𝑚 ∈ ℤ)
3315adantr 481 . . . . . . . . . . 11 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1))) = (𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1))))
3433fveq1d 6193 . . . . . . . . . 10 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐵, 1)))‘𝑥) = ((𝑘 ∈ ℤ ↦ ( I ‘if(𝑘𝐴, 𝐶, 1)))‘𝑥))
3534, 21, 243eqtr4g 2681 . . . . . . . . 9 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3635adantlr 751 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) ∧ 𝑥 ∈ (ℤ𝑚)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑥) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))‘𝑥))
3732, 36seqfeq 12826 . . . . . . 7 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))))
3837breq1d 4663 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥))
3931, 383anbi23d 1402 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
4039rexbidva 3049 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥)))
41 simplr 792 . . . . . . . . . 10 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ ℕ)
42 nnuz 11723 . . . . . . . . . 10 ℕ = (ℤ‘1)
4341, 42syl6eleq 2711 . . . . . . . . 9 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑚 ∈ (ℤ‘1))
44 f1of 6137 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑚)⟶𝐴)
4544ad2antlr 763 . . . . . . . . . . . . 13 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑓:(1...𝑚)⟶𝐴)
46 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)⟶𝐴𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
4745, 46sylancom 701 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) ∈ 𝐴)
48 simplll 798 . . . . . . . . . . . 12 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶))
49 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵)
50 nfcsb1v 3549 . . . . . . . . . . . . . 14 𝑘(𝑓𝑥) / 𝑘( I ‘𝐶)
5149, 50nfeq 2776 . . . . . . . . . . . . 13 𝑘(𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)
52 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐵))
53 csbeq1a 3542 . . . . . . . . . . . . . 14 (𝑘 = (𝑓𝑥) → ( I ‘𝐶) = (𝑓𝑥) / 𝑘( I ‘𝐶))
5452, 53eqeq12d 2637 . . . . . . . . . . . . 13 (𝑘 = (𝑓𝑥) → (( I ‘𝐵) = ( I ‘𝐶) ↔ (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5551, 54rspc 3303 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ 𝐴 → (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶)))
5647, 48, 55sylc 65 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → (𝑓𝑥) / 𝑘( I ‘𝐵) = (𝑓𝑥) / 𝑘( I ‘𝐶))
57 fvex 6201 . . . . . . . . . . . 12 (𝑓𝑥) ∈ V
58 csbfv2g 6232 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
5957, 58ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐵)
60 csbfv2g 6232 . . . . . . . . . . . 12 ((𝑓𝑥) ∈ V → (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
6157, 60ax-mp 5 . . . . . . . . . . 11 (𝑓𝑥) / 𝑘( I ‘𝐶) = ( I ‘(𝑓𝑥) / 𝑘𝐶)
6256, 59, 613eqtr3g 2679 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ( I ‘(𝑓𝑥) / 𝑘𝐵) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
63 elfznn 12370 . . . . . . . . . . . 12 (𝑥 ∈ (1...𝑚) → 𝑥 ∈ ℕ)
6463adantl 482 . . . . . . . . . . 11 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → 𝑥 ∈ ℕ)
65 fveq2 6191 . . . . . . . . . . . . 13 (𝑛 = 𝑥 → (𝑓𝑛) = (𝑓𝑥))
6665csbeq1d 3540 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑥) / 𝑘𝐵)
67 eqid 2622 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
6866, 67fvmpti 6281 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
6964, 68syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐵))
7065csbeq1d 3540 . . . . . . . . . . . 12 (𝑛 = 𝑥(𝑓𝑛) / 𝑘𝐶 = (𝑓𝑥) / 𝑘𝐶)
71 eqid 2622 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶) = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)
7270, 71fvmpti 6281 . . . . . . . . . . 11 (𝑥 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7364, 72syl 17 . . . . . . . . . 10 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥) = ( I ‘(𝑓𝑥) / 𝑘𝐶))
7462, 69, 733eqtr4d 2666 . . . . . . . . 9 ((((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑥 ∈ (1...𝑚)) → ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)‘𝑥) = ((𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶)‘𝑥))
7543, 74seqfveq 12825 . . . . . . . 8 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))
7675eqeq2d 2632 . . . . . . 7 (((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))
7776pm5.32da 673 . . . . . 6 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7877exbidv 1850 . . . . 5 ((∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
7978rexbidva 3049 . . . 4 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8040, 79orbi12d 746 . . 3 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
8180iotabidv 5872 . 2 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚)))))
82 df-prod 14636 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
83 df-prod 14636 . 2 𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐶, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐶))‘𝑚))))
8481, 82, 833eqtr4g 2681 1 (∀𝑘𝐴 ( I ‘𝐵) = ( I ‘𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729   I cid 5023  cio 5849  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   · cmul 9941  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-prod 14636
This theorem is referenced by:  prodeq2  14644  prod2id  14658
  Copyright terms: Public domain W3C validator