Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvsingle Structured version   Visualization version   GIF version

Theorem fvsingle 32027
Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
fvsingle (Singleton‘𝐴) = {𝐴}

Proof of Theorem fvsingle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4 (𝑥 = 𝐴 → (Singleton‘𝑥) = (Singleton‘𝐴))
2 sneq 4187 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
31, 2eqeq12d 2637 . . 3 (𝑥 = 𝐴 → ((Singleton‘𝑥) = {𝑥} ↔ (Singleton‘𝐴) = {𝐴}))
4 eqid 2622 . . . . 5 {𝑥} = {𝑥}
5 vex 3203 . . . . . 6 𝑥 ∈ V
6 snex 4908 . . . . . 6 {𝑥} ∈ V
75, 6brsingle 32024 . . . . 5 (𝑥Singleton{𝑥} ↔ {𝑥} = {𝑥})
84, 7mpbir 221 . . . 4 𝑥Singleton{𝑥}
9 fnsingle 32026 . . . . 5 Singleton Fn V
10 fnbrfvb 6236 . . . . 5 ((Singleton Fn V ∧ 𝑥 ∈ V) → ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥}))
119, 5, 10mp2an 708 . . . 4 ((Singleton‘𝑥) = {𝑥} ↔ 𝑥Singleton{𝑥})
128, 11mpbir 221 . . 3 (Singleton‘𝑥) = {𝑥}
133, 12vtoclg 3266 . 2 (𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
14 fvprc 6185 . . 3 𝐴 ∈ V → (Singleton‘𝐴) = ∅)
15 snprc 4253 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 206 . . 3 𝐴 ∈ V → {𝐴} = ∅)
1714, 16eqtr4d 2659 . 2 𝐴 ∈ V → (Singleton‘𝐴) = {𝐴})
1813, 17pm2.61i 176 1 (Singleton‘𝐴) = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  {csn 4177   class class class wbr 4653   Fn wfn 5883  cfv 5888  Singletoncsingle 31945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-singleton 31969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator