Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   GIF version

Theorem fwddifval 32269
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1 (𝜑𝐴 ⊆ ℂ)
fwddifval.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifval.3 (𝜑𝑋𝐴)
fwddifval.4 (𝜑 → (𝑋 + 1) ∈ 𝐴)
Assertion
Ref Expression
fwddifval (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))

Proof of Theorem fwddifval
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 32266 . . . . 5 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
21a1i 11 . . . 4 (𝜑 → △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)))))
3 dmeq 5324 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43eleq2d 2687 . . . . . . 7 (𝑓 = 𝐹 → ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹))
53, 4rabeqbidv 3195 . . . . . 6 (𝑓 = 𝐹 → {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹})
6 fveq1 6190 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 1)) = (𝐹‘(𝑥 + 1)))
7 fveq1 6190 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
86, 7oveq12d 6668 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)) = ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)))
95, 8mpteq12dv 4733 . . . . 5 (𝑓 = 𝐹 → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
109adantl 482 . . . 4 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
11 fwddifval.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
12 fwddifval.1 . . . . 5 (𝜑𝐴 ⊆ ℂ)
13 cnex 10017 . . . . . 6 ℂ ∈ V
14 elpm2r 7875 . . . . . 6 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
1513, 13, 14mpanl12 718 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
1611, 12, 15syl2anc 693 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
17 fdm 6051 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
1811, 17syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1913a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
2019, 12ssexd 4805 . . . . . 6 (𝜑𝐴 ∈ V)
2118, 20eqeltrd 2701 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
22 rabexg 4812 . . . . 5 (dom 𝐹 ∈ V → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V)
23 mptexg 6484 . . . . 5 ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
252, 10, 16, 24fvmptd 6288 . . 3 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2618eleq2d 2687 . . . . 5 (𝜑 → ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴))
2718, 26rabeqbidv 3195 . . . 4 (𝜑 → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
2827mpteq1d 4738 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2925, 28eqtrd 2656 . 2 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
30 oveq1 6657 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 1) = (𝑋 + 1))
3130fveq2d 6195 . . . 4 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑋 + 1)))
32 fveq2 6191 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
3331, 32oveq12d 6668 . . 3 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
3433adantl 482 . 2 ((𝜑𝑥 = 𝑋) → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
35 fwddifval.3 . . 3 (𝜑𝑋𝐴)
36 fwddifval.4 . . 3 (𝜑 → (𝑋 + 1) ∈ 𝐴)
37 oveq1 6657 . . . . 5 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3837eleq1d 2686 . . . 4 (𝑦 = 𝑋 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴))
3938elrab 3363 . . 3 (𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋𝐴 ∧ (𝑋 + 1) ∈ 𝐴))
4035, 36, 39sylanbrc 698 . 2 (𝜑𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
41 ovexd 6680 . 2 (𝜑 → ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)) ∈ V)
4229, 34, 40, 41fvmptd 6288 1 (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  1c1 9937   + caddc 9939  cmin 10266  cfwddif 32265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-fwddif 32266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator