Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifnval Structured version   Visualization version   GIF version

Theorem fwddifnval 32270
Description: The value of the forward difference operator at a point. (Contributed by Scott Fenton, 28-May-2020.)
Hypotheses
Ref Expression
fwddifnval.1 (𝜑𝑁 ∈ ℕ0)
fwddifnval.2 (𝜑𝐴 ⊆ ℂ)
fwddifnval.3 (𝜑𝐹:𝐴⟶ℂ)
fwddifnval.4 (𝜑𝑋 ∈ ℂ)
fwddifnval.5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
Assertion
Ref Expression
fwddifnval (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝑘,𝑋   𝑘,𝐹   𝜑,𝑘

Proof of Theorem fwddifnval
Dummy variables 𝑛 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddifn 32268 . . . 4 n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
21a1i 11 . . 3 (𝜑 → △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))))))
3 oveq2 6658 . . . . . . . 8 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43adantr 481 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → (0...𝑛) = (0...𝑁))
5 dmeq 5324 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
65eleq2d 2687 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
76adantl 482 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑦 + 𝑘) ∈ dom 𝑓 ↔ (𝑦 + 𝑘) ∈ dom 𝐹))
84, 7raleqbidv 3152 . . . . . 6 ((𝑛 = 𝑁𝑓 = 𝐹) → (∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓 ↔ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹))
98rabbidv 3189 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} = {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
10 oveq1 6657 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑛C𝑘) = (𝑁C𝑘))
1110adantr 481 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑛C𝑘) = (𝑁C𝑘))
12 oveq1 6657 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑛𝑘) = (𝑁𝑘))
1312oveq2d 6666 . . . . . . . . 9 (𝑛 = 𝑁 → (-1↑(𝑛𝑘)) = (-1↑(𝑁𝑘)))
14 fveq1 6190 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑘)) = (𝐹‘(𝑥 + 𝑘)))
1513, 14oveqan12d 6669 . . . . . . . 8 ((𝑛 = 𝑁𝑓 = 𝐹) → ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))
1611, 15oveq12d 6668 . . . . . . 7 ((𝑛 = 𝑁𝑓 = 𝐹) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
1716adantr 481 . . . . . 6 (((𝑛 = 𝑁𝑓 = 𝐹) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
184, 17sumeq12dv 14437 . . . . 5 ((𝑛 = 𝑁𝑓 = 𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))))
199, 18mpteq12dv 4733 . . . 4 ((𝑛 = 𝑁𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
2019adantl 482 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑓 = 𝐹)) → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
21 fwddifnval.1 . . 3 (𝜑𝑁 ∈ ℕ0)
22 fwddifnval.3 . . . 4 (𝜑𝐹:𝐴⟶ℂ)
23 fwddifnval.2 . . . 4 (𝜑𝐴 ⊆ ℂ)
24 cnex 10017 . . . . 5 ℂ ∈ V
25 elpm2r 7875 . . . . 5 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
2624, 24, 25mpanl12 718 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
2722, 23, 26syl2anc 693 . . 3 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
2824mptrabex 6488 . . . 4 (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V
2928a1i 11 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))) ∈ V)
302, 20, 21, 27, 29ovmpt2d 6788 . 2 (𝜑 → (𝑁n 𝐹) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↦ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))))))
31 oveq1 6657 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 + 𝑘) = (𝑋 + 𝑘))
3231fveq2d 6195 . . . . . 6 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑘)) = (𝐹‘(𝑋 + 𝑘)))
3332oveq2d 6666 . . . . 5 (𝑥 = 𝑋 → ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘))) = ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘))))
3433oveq2d 6666 . . . 4 (𝑥 = 𝑋 → ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = ((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3534sumeq2sdv 14435 . . 3 (𝑥 = 𝑋 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
3635adantl 482 . 2 ((𝜑𝑥 = 𝑋) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑥 + 𝑘)))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
37 fwddifnval.4 . . 3 (𝜑𝑋 ∈ ℂ)
38 fwddifnval.5 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ 𝐴)
39 fdm 6051 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
4022, 39syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4140adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → dom 𝐹 = 𝐴)
4238, 41eleqtrrd 2704 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑋 + 𝑘) ∈ dom 𝐹)
4342ralrimiva 2966 . . 3 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹)
44 oveq1 6657 . . . . . 6 (𝑦 = 𝑋 → (𝑦 + 𝑘) = (𝑋 + 𝑘))
4544eleq1d 2686 . . . . 5 (𝑦 = 𝑋 → ((𝑦 + 𝑘) ∈ dom 𝐹 ↔ (𝑋 + 𝑘) ∈ dom 𝐹))
4645ralbidv 2986 . . . 4 (𝑦 = 𝑋 → (∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹 ↔ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4746elrab 3363 . . 3 (𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹} ↔ (𝑋 ∈ ℂ ∧ ∀𝑘 ∈ (0...𝑁)(𝑋 + 𝑘) ∈ dom 𝐹))
4837, 43, 47sylanbrc 698 . 2 (𝜑𝑋 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑁)(𝑦 + 𝑘) ∈ dom 𝐹})
49 sumex 14418 . . 3 Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V
5049a1i 11 . 2 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))) ∈ V)
5130, 36, 48, 50fvmptd 6288 1 (𝜑 → ((𝑁n 𝐹)‘𝑋) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((-1↑(𝑁𝑘)) · (𝐹‘(𝑋 + 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  pm cpm 7858  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  0cn0 11292  ...cfz 12326  cexp 12860  Ccbc 13089  Σcsu 14416  n cfwddifn 32267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-fwddifn 32268
This theorem is referenced by:  fwddifn0  32271  fwddifnp1  32272
  Copyright terms: Public domain W3C validator