MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Visualization version   GIF version

Theorem galcan 17737
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
galcan (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 6658 . . 3 ((𝐴 𝐵) = (𝐴 𝐶) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
2 simpl 473 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ∈ (𝐺 GrpAct 𝑌))
3 gagrp 17725 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
42, 3syl 17 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐺 ∈ Grp)
5 simpr1 1067 . . . . . . 7 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐴𝑋)
6 galcan.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
7 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
8 eqid 2622 . . . . . . . 8 (0g𝐺) = (0g𝐺)
9 eqid 2622 . . . . . . . 8 (invg𝐺) = (invg𝐺)
106, 7, 8, 9grplinv 17468 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
114, 5, 10syl2anc 693 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐴) = (0g𝐺))
1211oveq1d 6665 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = ((0g𝐺) 𝐵))
136, 9grpinvcl 17467 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
144, 5, 13syl2anc 693 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
15 simpr2 1068 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐵𝑌)
166, 7gaass 17730 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐵𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
172, 14, 5, 15, 16syl13anc 1328 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐵) = (((invg𝐺)‘𝐴) (𝐴 𝐵)))
188gagrpid 17727 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐵𝑌) → ((0g𝐺) 𝐵) = 𝐵)
192, 15, 18syl2anc 693 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐵) = 𝐵)
2012, 17, 193eqtr3d 2664 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐵)) = 𝐵)
2111oveq1d 6665 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = ((0g𝐺) 𝐶))
22 simpr3 1069 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → 𝐶𝑌)
236, 7gaass 17730 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
242, 14, 5, 22, 23syl13anc 1328 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐴) 𝐶) = (((invg𝐺)‘𝐴) (𝐴 𝐶)))
258gagrpid 17727 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐶𝑌) → ((0g𝐺) 𝐶) = 𝐶)
262, 22, 25syl2anc 693 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((0g𝐺) 𝐶) = 𝐶)
2721, 24, 263eqtr3d 2664 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → (((invg𝐺)‘𝐴) (𝐴 𝐶)) = 𝐶)
2820, 27eqeq12d 2637 . . 3 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((((invg𝐺)‘𝐴) (𝐴 𝐵)) = (((invg𝐺)‘𝐴) (𝐴 𝐶)) ↔ 𝐵 = 𝐶))
291, 28syl5ib 234 . 2 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) → 𝐵 = 𝐶))
30 oveq2 6658 . 2 (𝐵 = 𝐶 → (𝐴 𝐵) = (𝐴 𝐶))
3129, 30impbid1 215 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑌𝐶𝑌)) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-ga 17723
This theorem is referenced by:  gacan  17738
  Copyright terms: Public domain W3C validator