MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaass Structured version   Visualization version   GIF version

Theorem gaass 17730
Description: An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaass.1 𝑋 = (Base‘𝐺)
gaass.2 + = (+g𝐺)
Assertion
Ref Expression
gaass (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))

Proof of Theorem gaass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaass.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 gaass.2 . . . . . . . 8 + = (+g𝐺)
3 eqid 2622 . . . . . . . 8 (0g𝐺) = (0g𝐺)
41, 2, 3isga 17724 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 480 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
65simprd 479 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))
7 simpr 477 . . . . . 6 ((((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
87ralimi 2952 . . . . 5 (∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
96, 8syl 17 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
10 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 + 𝑧) 𝑥) = ((𝑦 + 𝑧) 𝐶))
11 oveq2 6658 . . . . . . 7 (𝑥 = 𝐶 → (𝑧 𝑥) = (𝑧 𝐶))
1211oveq2d 6666 . . . . . 6 (𝑥 = 𝐶 → (𝑦 (𝑧 𝑥)) = (𝑦 (𝑧 𝐶)))
1310, 12eqeq12d 2637 . . . . 5 (𝑥 = 𝐶 → (((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) ↔ ((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶))))
14 oveq1 6657 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 + 𝑧) = (𝐴 + 𝑧))
1514oveq1d 6665 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 + 𝑧) 𝐶) = ((𝐴 + 𝑧) 𝐶))
16 oveq1 6657 . . . . . 6 (𝑦 = 𝐴 → (𝑦 (𝑧 𝐶)) = (𝐴 (𝑧 𝐶)))
1715, 16eqeq12d 2637 . . . . 5 (𝑦 = 𝐴 → (((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶)) ↔ ((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶))))
18 oveq2 6658 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵))
1918oveq1d 6665 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 + 𝑧) 𝐶) = ((𝐴 + 𝐵) 𝐶))
20 oveq1 6657 . . . . . . 7 (𝑧 = 𝐵 → (𝑧 𝐶) = (𝐵 𝐶))
2120oveq2d 6666 . . . . . 6 (𝑧 = 𝐵 → (𝐴 (𝑧 𝐶)) = (𝐴 (𝐵 𝐶)))
2219, 21eqeq12d 2637 . . . . 5 (𝑧 = 𝐵 → (((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶)) ↔ ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2313, 17, 22rspc3v 3325 . . . 4 ((𝐶𝑌𝐴𝑋𝐵𝑋) → (∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
249, 23syl5 34 . . 3 ((𝐶𝑌𝐴𝑋𝐵𝑋) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
25243coml 1272 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑌) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2625impcom 446 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Grpcgrp 17422   GrpAct cga 17722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ga 17723
This theorem is referenced by:  gass  17734  gasubg  17735  galcan  17737  gacan  17738  gaorber  17741  gastacl  17742  gastacos  17743  galactghm  17823
  Copyright terms: Public domain W3C validator