![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abbi2dv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) |
Ref | Expression |
---|---|
abbi2dv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
abbi2dv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | alrimiv 1855 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) |
3 | abeq2 2732 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜓)) | |
4 | 2, 3 | sylibr 224 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: abbi1dv 2743 sbab 2750 iftrue 4092 iffalse 4095 dfopif 4399 iniseg 5496 setlikespec 5701 fncnvima2 6339 isoini 6588 dftpos3 7370 hartogslem1 8447 r1val2 8700 cardval2 8817 dfac3 8944 wrdval 13308 wrdnval 13335 submacs 17365 dfrhm2 18717 lsppr 19093 rspsn 19254 znunithash 19913 tgval3 20767 txrest 21434 xkoptsub 21457 cnextf 21870 cnblcld 22578 shft2rab 23276 sca2rab 23280 grpoinvf 27386 elpjrn 29049 ofrn2 29442 neibastop3 32357 ecres2 34044 lkrval2 34377 lshpset2N 34406 hdmapoc 37223 mapsnd 39388 submgmacs 41804 |
Copyright terms: Public domain | W3C validator |