| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvf | Structured version Visualization version Unicode version | ||
| Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpasscan1.1 |
|
| grpasscan1.2 |
|
| Ref | Expression |
|---|---|
| grpoinvf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 6615 |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | 1, 2 | fnmpti 6022 |
. . 3
|
| 4 | grpasscan1.1 |
. . . . 5
| |
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | grpasscan1.2 |
. . . . 5
| |
| 7 | 4, 5, 6 | grpoinvfval 27376 |
. . . 4
|
| 8 | 7 | fneq1d 5981 |
. . 3
|
| 9 | 3, 8 | mpbiri 248 |
. 2
|
| 10 | fnrnfv 6242 |
. . . 4
| |
| 11 | 9, 10 | syl 17 |
. . 3
|
| 12 | 4, 6 | grpoinvcl 27378 |
. . . . . . 7
|
| 13 | 4, 6 | grpo2inv 27385 |
. . . . . . . 8
|
| 14 | 13 | eqcomd 2628 |
. . . . . . 7
|
| 15 | fveq2 6191 |
. . . . . . . . 9
| |
| 16 | 15 | eqeq2d 2632 |
. . . . . . . 8
|
| 17 | 16 | rspcev 3309 |
. . . . . . 7
|
| 18 | 12, 14, 17 | syl2anc 693 |
. . . . . 6
|
| 19 | 18 | ex 450 |
. . . . 5
|
| 20 | simpr 477 |
. . . . . . . 8
| |
| 21 | 4, 6 | grpoinvcl 27378 |
. . . . . . . . 9
|
| 22 | 21 | adantr 481 |
. . . . . . . 8
|
| 23 | 20, 22 | eqeltrd 2701 |
. . . . . . 7
|
| 24 | 23 | exp31 630 |
. . . . . 6
|
| 25 | 24 | rexlimdv 3030 |
. . . . 5
|
| 26 | 19, 25 | impbid 202 |
. . . 4
|
| 27 | 26 | abbi2dv 2742 |
. . 3
|
| 28 | 11, 27 | eqtr4d 2659 |
. 2
|
| 29 | fveq2 6191 |
. . . 4
| |
| 30 | 4, 6 | grpo2inv 27385 |
. . . . . 6
|
| 31 | 30, 13 | eqeqan12d 2638 |
. . . . 5
|
| 32 | 31 | anandis 873 |
. . . 4
|
| 33 | 29, 32 | syl5ib 234 |
. . 3
|
| 34 | 33 | ralrimivva 2971 |
. 2
|
| 35 | dff1o6 6531 |
. 2
| |
| 36 | 9, 28, 34, 35 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-grpo 27347 df-gid 27348 df-ginv 27349 |
| This theorem is referenced by: nvinvfval 27495 |
| Copyright terms: Public domain | W3C validator |