| Step | Hyp | Ref
| Expression |
| 1 | | bren 7964 |
. . . . 5
⊢ (𝐵 ≈ 𝐴 ↔ ∃𝑦 𝑦:𝐵–1-1-onto→𝐴) |
| 2 | | f1ofo 6144 |
. . . . . . . . 9
⊢ (𝑦:𝐵–1-1-onto→𝐴 → 𝑦:𝐵–onto→𝐴) |
| 3 | | simp3l 1089 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝑦:𝐵–onto→𝐴) |
| 4 | | forn 6118 |
. . . . . . . . . . . . 13
⊢ (𝑦:𝐵–onto→𝐴 → ran 𝑦 = 𝐴) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 = 𝐴) |
| 6 | | fof 6115 |
. . . . . . . . . . . . . 14
⊢ (𝑦:𝐵–onto→𝐴 → 𝑦:𝐵⟶𝐴) |
| 7 | | fss 6056 |
. . . . . . . . . . . . . 14
⊢ ((𝑦:𝐵⟶𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
| 8 | 6, 7 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝑦:𝐵⟶𝑈) |
| 9 | | grurn 9623 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ 𝑦:𝐵⟶𝑈) → ran 𝑦 ∈ 𝑈) |
| 10 | 8, 9 | syl3an3 1361 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → ran 𝑦 ∈ 𝑈) |
| 11 | 5, 10 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈 ∧ (𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈)) → 𝐴 ∈ 𝑈) |
| 12 | 11 | 3expia 1267 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → ((𝑦:𝐵–onto→𝐴 ∧ 𝐴 ⊆ 𝑈) → 𝐴 ∈ 𝑈)) |
| 13 | 12 | expd 452 |
. . . . . . . . 9
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 14 | 2, 13 | syl5 34 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 15 | 14 | exlimdv 1861 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → (𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈))) |
| 16 | 15 | com3r 87 |
. . . . . 6
⊢ (𝐴 ⊆ 𝑈 → ((𝑈 ∈ Univ ∧ 𝐵 ∈ 𝑈) → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
| 17 | 16 | expdimp 453 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (∃𝑦 𝑦:𝐵–1-1-onto→𝐴 → 𝐴 ∈ 𝑈))) |
| 18 | 1, 17 | syl7bi 245 |
. . . 4
⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → (𝐵 ∈ 𝑈 → (𝐵 ≈ 𝐴 → 𝐴 ∈ 𝑈))) |
| 19 | 18 | impd 447 |
. . 3
⊢ ((𝐴 ⊆ 𝑈 ∧ 𝑈 ∈ Univ) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
| 20 | 19 | ancoms 469 |
. 2
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈) → ((𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴) → 𝐴 ∈ 𝑈)) |
| 21 | 20 | 3impia 1261 |
1
⊢ ((𝑈 ∈ Univ ∧ 𝐴 ⊆ 𝑈 ∧ (𝐵 ∈ 𝑈 ∧ 𝐵 ≈ 𝐴)) → 𝐴 ∈ 𝑈) |