MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruen Structured version   Visualization version   Unicode version

Theorem gruen 9634
Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruen  |-  ( ( U  e.  Univ  /\  A  C_  U  /\  ( B  e.  U  /\  B  ~~  A ) )  ->  A  e.  U )

Proof of Theorem gruen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 bren 7964 . . . . 5  |-  ( B 
~~  A  <->  E. y 
y : B -1-1-onto-> A )
2 f1ofo 6144 . . . . . . . . 9  |-  ( y : B -1-1-onto-> A  ->  y : B -onto-> A )
3 simp3l 1089 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  (
y : B -onto-> A  /\  A  C_  U ) )  ->  y : B -onto-> A )
4 forn 6118 . . . . . . . . . . . . 13  |-  ( y : B -onto-> A  ->  ran  y  =  A
)
53, 4syl 17 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  (
y : B -onto-> A  /\  A  C_  U ) )  ->  ran  y  =  A )
6 fof 6115 . . . . . . . . . . . . . 14  |-  ( y : B -onto-> A  -> 
y : B --> A )
7 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( y : B --> A  /\  A  C_  U )  -> 
y : B --> U )
86, 7sylan 488 . . . . . . . . . . . . 13  |-  ( ( y : B -onto-> A  /\  A  C_  U )  ->  y : B --> U )
9 grurn 9623 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  y : B --> U )  ->  ran  y  e.  U
)
108, 9syl3an3 1361 . . . . . . . . . . . 12  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  (
y : B -onto-> A  /\  A  C_  U ) )  ->  ran  y  e.  U )
115, 10eqeltrrd 2702 . . . . . . . . . . 11  |-  ( ( U  e.  Univ  /\  B  e.  U  /\  (
y : B -onto-> A  /\  A  C_  U ) )  ->  A  e.  U )
12113expia 1267 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
( y : B -onto-> A  /\  A  C_  U
)  ->  A  e.  U ) )
1312expd 452 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y : B -onto-> A  ->  ( A  C_  U  ->  A  e.  U ) ) )
142, 13syl5 34 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  (
y : B -1-1-onto-> A  -> 
( A  C_  U  ->  A  e.  U ) ) )
1514exlimdv 1861 . . . . . . 7  |-  ( ( U  e.  Univ  /\  B  e.  U )  ->  ( E. y  y : B
-1-1-onto-> A  ->  ( A  C_  U  ->  A  e.  U
) ) )
1615com3r 87 . . . . . 6  |-  ( A 
C_  U  ->  (
( U  e.  Univ  /\  B  e.  U )  ->  ( E. y 
y : B -1-1-onto-> A  ->  A  e.  U )
) )
1716expdimp 453 . . . . 5  |-  ( ( A  C_  U  /\  U  e.  Univ )  -> 
( B  e.  U  ->  ( E. y  y : B -1-1-onto-> A  ->  A  e.  U ) ) )
181, 17syl7bi 245 . . . 4  |-  ( ( A  C_  U  /\  U  e.  Univ )  -> 
( B  e.  U  ->  ( B  ~~  A  ->  A  e.  U ) ) )
1918impd 447 . . 3  |-  ( ( A  C_  U  /\  U  e.  Univ )  -> 
( ( B  e.  U  /\  B  ~~  A )  ->  A  e.  U ) )
2019ancoms 469 . 2  |-  ( ( U  e.  Univ  /\  A  C_  U )  ->  (
( B  e.  U  /\  B  ~~  A )  ->  A  e.  U
) )
21203impia 1261 1  |-  ( ( U  e.  Univ  /\  A  C_  U  /\  ( B  e.  U  /\  B  ~~  A ) )  ->  A  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    C_ wss 3574   class class class wbr 4653   ran crn 5115   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887    ~~ cen 7952   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-en 7956  df-gru 9613
This theorem is referenced by:  grudomon  9639  gruina  9640
  Copyright terms: Public domain W3C validator