![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruurn | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun 9621 for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruurn | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapg 7870 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝑈)) | |
2 | elgrug 9614 | . . . . . . 7 ⊢ (𝑈 ∈ Univ → (𝑈 ∈ Univ ↔ (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)))) | |
3 | 2 | ibi 256 | . . . . . 6 ⊢ (𝑈 ∈ Univ → (Tr 𝑈 ∧ ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈))) |
4 | 3 | simprd 479 | . . . . 5 ⊢ (𝑈 ∈ Univ → ∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈)) |
5 | rneq 5351 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐹 → ran 𝑦 = ran 𝐹) | |
6 | 5 | unieqd 4446 | . . . . . . . . 9 ⊢ (𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹) |
7 | 6 | eleq1d 2686 | . . . . . . . 8 ⊢ (𝑦 = 𝐹 → (∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈)) |
8 | 7 | rspccv 3306 | . . . . . . 7 ⊢ (∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑𝑚 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
9 | 8 | 3ad2ant3 1084 | . . . . . 6 ⊢ ((𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑𝑚 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
10 | 9 | ralimi 2952 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈 ∧ ∀𝑦 ∈ (𝑈 ↑𝑚 𝑥)∪ ran 𝑦 ∈ 𝑈) → ∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑𝑚 𝑥) → ∪ ran 𝐹 ∈ 𝑈)) |
11 | oveq2 6658 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑈 ↑𝑚 𝑥) = (𝑈 ↑𝑚 𝐴)) | |
12 | 11 | eleq2d 2687 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹 ∈ (𝑈 ↑𝑚 𝑥) ↔ 𝐹 ∈ (𝑈 ↑𝑚 𝐴))) |
13 | 12 | imbi1d 331 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹 ∈ (𝑈 ↑𝑚 𝑥) → ∪ ran 𝐹 ∈ 𝑈) ↔ (𝐹 ∈ (𝑈 ↑𝑚 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
14 | 13 | rspccv 3306 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑈 (𝐹 ∈ (𝑈 ↑𝑚 𝑥) → ∪ ran 𝐹 ∈ 𝑈) → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑𝑚 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
15 | 4, 10, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ Univ → (𝐴 ∈ 𝑈 → (𝐹 ∈ (𝑈 ↑𝑚 𝐴) → ∪ ran 𝐹 ∈ 𝑈))) |
16 | 15 | imp 445 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹 ∈ (𝑈 ↑𝑚 𝐴) → ∪ ran 𝐹 ∈ 𝑈)) |
17 | 1, 16 | sylbird 250 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈) → (𝐹:𝐴⟶𝑈 → ∪ ran 𝐹 ∈ 𝑈)) |
18 | 17 | 3impia 1261 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹:𝐴⟶𝑈) → ∪ ran 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 𝒫 cpw 4158 {cpr 4179 ∪ cuni 4436 Tr wtr 4752 ran crn 5115 ⟶wf 5884 (class class class)co 6650 ↑𝑚 cmap 7857 Univcgru 9612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-gru 9613 |
This theorem is referenced by: gruiun 9621 grurn 9623 intgru 9636 |
Copyright terms: Public domain | W3C validator |