![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval1 | Structured version Visualization version GIF version |
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval1.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval1.z | ⊢ 0 = (0g‘𝐺) |
gsumval1.p | ⊢ + = (+g‘𝐺) |
gsumval1.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
gsumval1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumval1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
Ref | Expression |
---|---|
gsumval1 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval1.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval1.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumval1.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | eqidd 2623 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | gsumval1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) | |
9 | ssrab2 3687 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ 𝐵 | |
10 | 4, 9 | eqsstri 3635 | . . . 4 ⊢ 𝑂 ⊆ 𝐵 |
11 | fss 6056 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑂 ∧ 𝑂 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
12 | 8, 10, 11 | sylancl 694 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
13 | 1, 2, 3, 4, 5, 6, 7, 12 | gsumval 17271 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(#‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ 𝑂))))))))) |
14 | frn 6053 | . . 3 ⊢ (𝐹:𝐴⟶𝑂 → ran 𝐹 ⊆ 𝑂) | |
15 | iftrue 4092 | . . 3 ⊢ (ran 𝐹 ⊆ 𝑂 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(#‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) | |
16 | 8, 14, 15 | 3syl 18 | . 2 ⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(#‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(#‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) |
17 | 13, 16 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 {crab 2916 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 ifcif 4086 ◡ccnv 5113 ran crn 5115 “ cima 5117 ∘ ccom 5118 ℩cio 5849 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 1c1 9937 ℤ≥cuz 11687 ...cfz 12326 seqcseq 12801 #chash 13117 Basecbs 15857 +gcplusg 15941 0gc0g 16100 Σg cgsu 16101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-gsum 16103 |
This theorem is referenced by: gsum0 17278 gsumval2 17280 gsumz 17374 |
Copyright terms: Public domain | W3C validator |