MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval1 Structured version   Visualization version   Unicode version

Theorem gsumval1 17277
Description: Value of the group sum operation when every element being summed is an identity of  G. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval1.b  |-  B  =  ( Base `  G
)
gsumval1.z  |-  .0.  =  ( 0g `  G )
gsumval1.p  |-  .+  =  ( +g  `  G )
gsumval1.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
gsumval1.g  |-  ( ph  ->  G  e.  V )
gsumval1.a  |-  ( ph  ->  A  e.  W )
gsumval1.f  |-  ( ph  ->  F : A --> O )
Assertion
Ref Expression
gsumval1  |-  ( ph  ->  ( G  gsumg  F )  =  .0.  )
Distinct variable groups:    x, y, B    x,  .+ , y
Allowed substitution hints:    ph( x, y)    A( x, y)    F( x, y)    G( x, y)    O( x, y)    V( x, y)    W( x, y)    .0. ( x, y)

Proof of Theorem gsumval1
Dummy variables  f  m  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval1.b . . 3  |-  B  =  ( Base `  G
)
2 gsumval1.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumval1.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumval1.o . . 3  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
5 eqidd 2623 . . 3  |-  ( ph  ->  ( `' F "
( _V  \  O
) )  =  ( `' F " ( _V 
\  O ) ) )
6 gsumval1.g . . 3  |-  ( ph  ->  G  e.  V )
7 gsumval1.a . . 3  |-  ( ph  ->  A  e.  W )
8 gsumval1.f . . . 4  |-  ( ph  ->  F : A --> O )
9 ssrab2 3687 . . . . 5  |-  { x  e.  B  |  A. y  e.  B  (
( x  .+  y
)  =  y  /\  ( y  .+  x
)  =  y ) }  C_  B
104, 9eqsstri 3635 . . . 4  |-  O  C_  B
11 fss 6056 . . . 4  |-  ( ( F : A --> O  /\  O  C_  B )  ->  F : A --> B )
128, 10, 11sylancl 694 . . 3  |-  ( ph  ->  F : A --> B )
131, 2, 3, 4, 5, 6, 7, 12gsumval 17271 . 2  |-  ( ph  ->  ( G  gsumg  F )  =  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) ) )
14 frn 6053 . . 3  |-  ( F : A --> O  ->  ran  F  C_  O )
15 iftrue 4092 . . 3  |-  ( ran 
F  C_  O  ->  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) )  =  .0.  )
168, 14, 153syl 18 . 2  |-  ( ph  ->  if ( ran  F  C_  O ,  .0.  ,  if ( A  e.  ran  ...
,  ( iota z E. m E. n  e.  ( ZZ>= `  m )
( A  =  ( m ... n )  /\  z  =  (  seq m (  .+  ,  F ) `  n
) ) ) ,  ( iota z E. f ( f : ( 1 ... ( # `
 ( `' F " ( _V  \  O
) ) ) ) -1-1-onto-> ( `' F " ( _V 
\  O ) )  /\  z  =  (  seq 1 (  .+  ,  ( F  o.  f ) ) `  ( # `  ( `' F " ( _V 
\  O ) ) ) ) ) ) ) )  =  .0.  )
1713, 16eqtrd 2656 1  |-  ( ph  ->  ( G  gsumg  F )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   `'ccnv 5113   ran crn 5115   "cima 5117    o. ccom 5118   iotacio 5849   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1c1 9937   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   #chash 13117   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-gsum 16103
This theorem is referenced by:  gsum0  17278  gsumval2  17280  gsumz  17374
  Copyright terms: Public domain W3C validator