Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilset Structured version   Visualization version   GIF version

Theorem hlhilset 37226
Description: The final Hilbert space constructed from a Hilbert lattice 𝐾 and an arbitrary hyperplane 𝑊 in 𝐾. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilset.h 𝐻 = (LHyp‘𝐾)
hlhilset.l 𝐿 = ((HLHil‘𝐾)‘𝑊)
hlhilset.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hlhilset.v 𝑉 = (Base‘𝑈)
hlhilset.p + = (+g𝑈)
hlhilset.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilset.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilset.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
hlhilset.t · = ( ·𝑠𝑈)
hlhilset.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hlhilset.i , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
hlhilset.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhilset (𝜑𝐿 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
Distinct variable groups:   𝑥,𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   , (𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem hlhilset
Dummy variables 𝑤 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilset.l . 2 𝐿 = ((HLHil‘𝐾)‘𝑊)
2 hlhilset.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 elex 3212 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ V)
43adantr 481 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ V)
52, 4syl 17 . . . 4 (𝜑𝐾 ∈ V)
6 hlhilset.h . . . . . 6 𝐻 = (LHyp‘𝐾)
7 fvex 6201 . . . . . 6 (LHyp‘𝐾) ∈ V
86, 7eqeltri 2697 . . . . 5 𝐻 ∈ V
98mptex 6486 . . . 4 (𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) ∈ V
10 nfcv 2764 . . . . 5 𝑘𝐾
11 nfcv 2764 . . . . . 6 𝑘𝐻
12 nfcsb1v 3549 . . . . . 6 𝑘𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})
1311, 12nfmpt 4746 . . . . 5 𝑘(𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))
14 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
1514, 6syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
16 csbeq1a 3542 . . . . . 6 (𝑘 = 𝐾((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = 𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}))
1715, 16mpteq12dv 4733 . . . . 5 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) = (𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
18 df-hlhil 37225 . . . . 5 HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
1910, 13, 17, 18fvmptf 6301 . . . 4 ((𝐾 ∈ V ∧ (𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})) ∈ V) → (HLHil‘𝐾) = (𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
205, 9, 19sylancl 694 . . 3 (𝜑 → (HLHil‘𝐾) = (𝑤𝐻𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
215adantr 481 . . . 4 ((𝜑𝑤 = 𝑊) → 𝐾 ∈ V)
22 fvexd 6203 . . . . 5 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) ∈ V)
23 fvexd 6203 . . . . . 6 ((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) ∈ V)
24 id 22 . . . . . . . . . 10 (𝑣 = (Base‘𝑢) → 𝑣 = (Base‘𝑢))
25 id 22 . . . . . . . . . . . . 13 (𝑢 = ((DVecH‘𝑘)‘𝑤) → 𝑢 = ((DVecH‘𝑘)‘𝑤))
26 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑘 = 𝐾)
2726fveq2d 6195 . . . . . . . . . . . . . . 15 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (DVecH‘𝑘) = (DVecH‘𝐾))
28 simplr 792 . . . . . . . . . . . . . . 15 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → 𝑤 = 𝑊)
2927, 28fveq12d 6197 . . . . . . . . . . . . . 14 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
30 hlhilset.u . . . . . . . . . . . . . 14 𝑈 = ((DVecH‘𝐾)‘𝑊)
3129, 30syl6eqr 2674 . . . . . . . . . . . . 13 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) = 𝑈)
3225, 31sylan9eqr 2678 . . . . . . . . . . . 12 ((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → 𝑢 = 𝑈)
3332fveq2d 6195 . . . . . . . . . . 11 ((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = (Base‘𝑈))
34 hlhilset.v . . . . . . . . . . 11 𝑉 = (Base‘𝑈)
3533, 34syl6eqr 2674 . . . . . . . . . 10 ((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) = 𝑉)
3624, 35sylan9eqr 2678 . . . . . . . . 9 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑣 = 𝑉)
3736opeq2d 4409 . . . . . . . 8 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(Base‘ndx), 𝑣⟩ = ⟨(Base‘ndx), 𝑉⟩)
3832adantr 481 . . . . . . . . . . 11 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → 𝑢 = 𝑈)
3938fveq2d 6195 . . . . . . . . . 10 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g𝑢) = (+g𝑈))
40 hlhilset.p . . . . . . . . . 10 + = (+g𝑈)
4139, 40syl6eqr 2674 . . . . . . . . 9 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (+g𝑢) = + )
4241opeq2d 4409 . . . . . . . 8 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(+g‘ndx), (+g𝑢)⟩ = ⟨(+g‘ndx), + ⟩)
4326fveq2d 6195 . . . . . . . . . . . . . 14 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (EDRing‘𝑘) = (EDRing‘𝐾))
4443, 28fveq12d 6197 . . . . . . . . . . . . 13 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = ((EDRing‘𝐾)‘𝑊))
45 hlhilset.e . . . . . . . . . . . . 13 𝐸 = ((EDRing‘𝐾)‘𝑊)
4644, 45syl6eqr 2674 . . . . . . . . . . . 12 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((EDRing‘𝑘)‘𝑤) = 𝐸)
4726fveq2d 6195 . . . . . . . . . . . . . . 15 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HGMap‘𝑘) = (HGMap‘𝐾))
4847, 28fveq12d 6197 . . . . . . . . . . . . . 14 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = ((HGMap‘𝐾)‘𝑊))
49 hlhilset.g . . . . . . . . . . . . . 14 𝐺 = ((HGMap‘𝐾)‘𝑊)
5048, 49syl6eqr 2674 . . . . . . . . . . . . 13 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HGMap‘𝑘)‘𝑤) = 𝐺)
5150opeq2d 4409 . . . . . . . . . . . 12 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩ = ⟨(*𝑟‘ndx), 𝐺⟩)
5246, 51oveq12d 6668 . . . . . . . . . . 11 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩) = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩))
53 hlhilset.r . . . . . . . . . . 11 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
5452, 53syl6eqr 2674 . . . . . . . . . 10 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩) = 𝑅)
5554opeq2d 4409 . . . . . . . . 9 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩ = ⟨(Scalar‘ndx), 𝑅⟩)
5655ad2antrr 762 . . . . . . . 8 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩ = ⟨(Scalar‘ndx), 𝑅⟩)
5737, 42, 56tpeq123d 4283 . . . . . . 7 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} = {⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩})
5838fveq2d 6195 . . . . . . . . . 10 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ( ·𝑠𝑢) = ( ·𝑠𝑈))
59 hlhilset.t . . . . . . . . . 10 · = ( ·𝑠𝑈)
6058, 59syl6eqr 2674 . . . . . . . . 9 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ( ·𝑠𝑢) = · )
6160opeq2d 4409 . . . . . . . 8 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩ = ⟨( ·𝑠 ‘ndx), · ⟩)
6226fveq2d 6195 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → (HDMap‘𝑘) = (HDMap‘𝐾))
6362, 28fveq12d 6197 . . . . . . . . . . . . . . 15 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = ((HDMap‘𝐾)‘𝑊))
64 hlhilset.s . . . . . . . . . . . . . . 15 𝑆 = ((HDMap‘𝐾)‘𝑊)
6563, 64syl6eqr 2674 . . . . . . . . . . . . . 14 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((HDMap‘𝑘)‘𝑤) = 𝑆)
6665ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((HDMap‘𝑘)‘𝑤) = 𝑆)
6766fveq1d 6193 . . . . . . . . . . . 12 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (((HDMap‘𝑘)‘𝑤)‘𝑦) = (𝑆𝑦))
6867fveq1d 6193 . . . . . . . . . . 11 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥) = ((𝑆𝑦)‘𝑥))
6936, 36, 68mpt2eq123dv 6717 . . . . . . . . . 10 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)))
70 hlhilset.i . . . . . . . . . 10 , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
7169, 70syl6eqr 2674 . . . . . . . . 9 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥)) = , )
7271opeq2d 4409 . . . . . . . 8 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩ = ⟨(·𝑖‘ndx), , ⟩)
7361, 72preq12d 4276 . . . . . . 7 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩} = {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩})
7457, 73uneq12d 3768 . . . . . 6 (((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) ∧ 𝑣 = (Base‘𝑢)) → ({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
7523, 74csbied 3560 . . . . 5 ((((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) ∧ 𝑢 = ((DVecH‘𝑘)‘𝑤)) → (Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
7622, 75csbied 3560 . . . 4 (((𝜑𝑤 = 𝑊) ∧ 𝑘 = 𝐾) → ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
7721, 76csbied 3560 . . 3 ((𝜑𝑤 = 𝑊) → 𝐾 / 𝑘((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
782simprd 479 . . 3 (𝜑𝑊𝐻)
79 tpex 6957 . . . . 5 {⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∈ V
80 prex 4909 . . . . 5 {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩} ∈ V
8179, 80unex 6956 . . . 4 ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V
8281a1i 11 . . 3 (𝜑 → ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}) ∈ V)
8320, 77, 78, 82fvmptd 6288 . 2 (𝜑 → ((HLHil‘𝐾)‘𝑊) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
841, 83syl5eq 2668 1 (𝜑𝐿 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), , ⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  csb 3533  cun 3572  {cpr 4179  {ctp 4181  cop 4183  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  ndxcnx 15854   sSet csts 15855  Basecbs 15857  +gcplusg 15941  *𝑟cstv 15943  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  HLchlt 34637  LHypclh 35270  EDRingcedring 36041  DVecHcdvh 36367  HDMapchdma 37082  HGMapchg 37175  HLHilchlh 37224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-hlhil 37225
This theorem is referenced by:  hlhilsca  37227  hlhilbase  37228  hlhilplus  37229  hlhilvsca  37239  hlhilip  37240
  Copyright terms: Public domain W3C validator