Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilip Structured version   Visualization version   GIF version

Theorem hlhilip 37240
Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilip.h 𝐻 = (LHyp‘𝐾)
hlhilip.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilip.v 𝑉 = (Base‘𝐿)
hlhilip.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hlhilip.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilip.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilip.p , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
Assertion
Ref Expression
hlhilip (𝜑, = (·𝑖𝑈))
Distinct variable groups:   𝑥,𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   , (𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem hlhilip
StepHypRef Expression
1 hlhilip.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilip.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilip.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
4 hlhilip.v . . . 4 𝑉 = (Base‘𝐿)
5 eqid 2622 . . . 4 (+g𝐿) = (+g𝐿)
6 eqid 2622 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
7 eqid 2622 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
8 eqid 2622 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
9 eqid 2622 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
10 hlhilip.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hlhilip.p . . . 4 , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
12 hlhilip.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 37226 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
1413fveq2d 6195 . 2 (𝜑 → (·𝑖𝑈) = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
15 fvex 6201 . . . . . 6 (Base‘𝐿) ∈ V
164, 15eqeltri 2697 . . . . 5 𝑉 ∈ V
1716, 16mpt2ex 7247 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)) ∈ V
1811, 17eqeltri 2697 . . 3 , ∈ V
19 eqid 2622 . . . 4 ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})
2019phlip 16039 . . 3 ( , ∈ V → , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
2118, 20ax-mp 5 . 2 , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
2214, 21syl6reqr 2675 1 (𝜑, = (·𝑖𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  {cpr 4179  {ctp 4181  cop 4183  cfv 5888  (class class class)co 6650  cmpt2 6652  ndxcnx 15854   sSet csts 15855  Basecbs 15857  +gcplusg 15941  *𝑟cstv 15943  Scalarcsca 15944   ·𝑠 cvsca 15945  ·𝑖cip 15946  HLchlt 34637  LHypclh 35270  EDRingcedring 36041  DVecHcdvh 36367  HDMapchdma 37082  HGMapchg 37175  HLHilchlh 37224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ip 15959  df-hlhil 37225
This theorem is referenced by:  hlhilipval  37241
  Copyright terms: Public domain W3C validator