Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsf1o Structured version   Visualization version   GIF version

Theorem cvmsf1o 31254
Description: 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsf1o ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴):𝐴1-1-onto𝑈)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsf1o
StepHypRef Expression
1 cvmtop1 31242 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
213ad2ant1 1082 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐶 ∈ Top)
3 eqid 2622 . . . . 5 𝐶 = 𝐶
43toptopon 20722 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘ 𝐶))
52, 4sylib 208 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐶 ∈ (TopOn‘ 𝐶))
6 cvmcov.1 . . . . . . 7 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
76cvmsss 31249 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
873ad2ant2 1083 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇𝐶)
9 simp3 1063 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴𝑇)
108, 9sseldd 3604 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴𝐶)
11 elssuni 4467 . . . 4 (𝐴𝐶𝐴 𝐶)
1210, 11syl 17 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 𝐶)
13 resttopon 20965 . . 3 ((𝐶 ∈ (TopOn‘ 𝐶) ∧ 𝐴 𝐶) → (𝐶t 𝐴) ∈ (TopOn‘𝐴))
145, 12, 13syl2anc 693 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐶t 𝐴) ∈ (TopOn‘𝐴))
15 cvmtop2 31243 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top)
16153ad2ant1 1082 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐽 ∈ Top)
17 eqid 2622 . . . . 5 𝐽 = 𝐽
1817toptopon 20722 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1916, 18sylib 208 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐽 ∈ (TopOn‘ 𝐽))
206cvmsrcl 31246 . . . . 5 (𝑇 ∈ (𝑆𝑈) → 𝑈𝐽)
21203ad2ant2 1083 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑈𝐽)
22 elssuni 4467 . . . 4 (𝑈𝐽𝑈 𝐽)
2321, 22syl 17 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑈 𝐽)
24 resttopon 20965 . . 3 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑈 𝐽) → (𝐽t 𝑈) ∈ (TopOn‘𝑈))
2519, 23, 24syl2anc 693 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐽t 𝑈) ∈ (TopOn‘𝑈))
266cvmshmeo 31253 . . 3 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
27263adant1 1079 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈)))
28 hmeof1o2 21566 . 2 (((𝐶t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐽t 𝑈) ∈ (TopOn‘𝑈) ∧ (𝐹𝐴) ∈ ((𝐶t 𝐴)Homeo(𝐽t 𝑈))) → (𝐹𝐴):𝐴1-1-onto𝑈)
2914, 25, 27, 28syl3anc 1326 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝐴):𝐴1-1-onto𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729  ccnv 5113  cres 5116  cima 5117  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715  Homeochmeo 21556   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-hmeo 21558  df-cvm 31238
This theorem is referenced by:  cvmsss2  31256  cvmfolem  31261  cvmliftmolem1  31263  cvmliftlem6  31272  cvmliftlem9  31275  cvmlift2lem9a  31285
  Copyright terms: Public domain W3C validator