| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hof2val | Structured version Visualization version GIF version | ||
| Description: The morphism part of the Hom functor, for morphisms 〈𝑓, 𝑔〉:〈𝑋, 𝑌〉⟶〈𝑍, 𝑊〉 (which since the first argument is contravariant means morphisms 𝑓:𝑍⟶𝑋 and 𝑔:𝑌⟶𝑊), yields a function (a morphism of SetCat) mapping ℎ:𝑋⟶𝑌 to 𝑔 ∘ ℎ ∘ 𝑓:𝑍⟶𝑊. (Contributed by Mario Carneiro, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| hofval.m | ⊢ 𝑀 = (HomF‘𝐶) |
| hofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| hof1.b | ⊢ 𝐵 = (Base‘𝐶) |
| hof1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| hof1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| hof1.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| hof2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| hof2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| hof2.o | ⊢ · = (comp‘𝐶) |
| hof2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) |
| hof2.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) |
| Ref | Expression |
|---|---|
| hof2val | ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hofval.m | . . 3 ⊢ 𝑀 = (HomF‘𝐶) | |
| 2 | hofval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | hof1.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | hof1.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | hof1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | hof1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | hof2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | hof2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 9 | hof2.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | hof2fval 16895 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉) = (𝑓 ∈ (𝑍𝐻𝑋), 𝑔 ∈ (𝑌𝐻𝑊) ↦ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)))) |
| 11 | simplrr 801 | . . . . 5 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑔 = 𝐺) | |
| 12 | 11 | oveq1d 6665 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → (𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ) = (𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)) |
| 13 | simplrl 800 | . . . 4 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → 𝑓 = 𝐹) | |
| 14 | 12, 13 | oveq12d 6668 | . . 3 ⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) ∧ ℎ ∈ (𝑋𝐻𝑌)) → ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓) = ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) |
| 15 | 14 | mpteq2dva 4744 | . 2 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝑔(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝑓)) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| 16 | hof2.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑍𝐻𝑋)) | |
| 17 | hof2.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑊)) | |
| 18 | ovex 6678 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 19 | 18 | mptex 6486 | . . 3 ⊢ (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹)) ∈ V) |
| 21 | 10, 15, 16, 17, 20 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉(2nd ‘𝑀)〈𝑍, 𝑊〉)𝐺) = (ℎ ∈ (𝑋𝐻𝑌) ↦ ((𝐺(〈𝑋, 𝑌〉 · 𝑊)ℎ)(〈𝑍, 𝑋〉 · 𝑊)𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 〈cop 4183 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 2nd c2nd 7167 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 HomFchof 16888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-hof 16890 |
| This theorem is referenced by: hof2 16897 hofcllem 16898 hofcl 16899 yonedalem3b 16919 |
| Copyright terms: Public domain | W3C validator |