MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hofcllem Structured version   Visualization version   GIF version

Theorem hofcllem 16898
Description: Lemma for hofcl 16899. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
hofcl.m 𝑀 = (HomF𝐶)
hofcl.o 𝑂 = (oppCat‘𝐶)
hofcl.d 𝐷 = (SetCat‘𝑈)
hofcl.c (𝜑𝐶 ∈ Cat)
hofcl.u (𝜑𝑈𝑉)
hofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
hofcllem.b 𝐵 = (Base‘𝐶)
hofcllem.h 𝐻 = (Hom ‘𝐶)
hofcllem.x (𝜑𝑋𝐵)
hofcllem.y (𝜑𝑌𝐵)
hofcllem.z (𝜑𝑍𝐵)
hofcllem.w (𝜑𝑊𝐵)
hofcllem.s (𝜑𝑆𝐵)
hofcllem.t (𝜑𝑇𝐵)
hofcllem.m (𝜑𝐾 ∈ (𝑍𝐻𝑋))
hofcllem.n (𝜑𝐿 ∈ (𝑌𝐻𝑊))
hofcllem.p (𝜑𝑃 ∈ (𝑆𝐻𝑍))
hofcllem.q (𝜑𝑄 ∈ (𝑊𝐻𝑇))
Assertion
Ref Expression
hofcllem (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))

Proof of Theorem hofcllem
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hofcllem.b . . . . 5 𝐵 = (Base‘𝐶)
2 hofcllem.h . . . . 5 𝐻 = (Hom ‘𝐶)
3 eqid 2622 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 hofcl.c . . . . . 6 (𝜑𝐶 ∈ Cat)
54adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐶 ∈ Cat)
6 hofcllem.s . . . . . 6 (𝜑𝑆𝐵)
76adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑆𝐵)
8 hofcllem.z . . . . . 6 (𝜑𝑍𝐵)
98adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑍𝐵)
10 hofcllem.x . . . . . 6 (𝜑𝑋𝐵)
1110adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑋𝐵)
12 hofcllem.p . . . . . 6 (𝜑𝑃 ∈ (𝑆𝐻𝑍))
1312adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑃 ∈ (𝑆𝐻𝑍))
14 hofcllem.m . . . . . 6 (𝜑𝐾 ∈ (𝑍𝐻𝑋))
1514adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐾 ∈ (𝑍𝐻𝑋))
16 hofcllem.t . . . . . 6 (𝜑𝑇𝐵)
1716adantr 481 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑇𝐵)
18 hofcllem.y . . . . . . 7 (𝜑𝑌𝐵)
1918adantr 481 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑌𝐵)
20 simpr 477 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑓 ∈ (𝑋𝐻𝑌))
21 hofcllem.w . . . . . . . 8 (𝜑𝑊𝐵)
22 hofcllem.n . . . . . . . 8 (𝜑𝐿 ∈ (𝑌𝐻𝑊))
23 hofcllem.q . . . . . . . 8 (𝜑𝑄 ∈ (𝑊𝐻𝑇))
241, 2, 3, 4, 18, 21, 16, 22, 23catcocl 16346 . . . . . . 7 (𝜑 → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
2524adantr 481 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿) ∈ (𝑌𝐻𝑇))
261, 2, 3, 5, 11, 19, 17, 20, 25catcocl 16346 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑋𝐻𝑇))
271, 2, 3, 5, 7, 9, 11, 13, 15, 17, 26catass 16347 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)))
2821adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑊𝐵)
2922adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝐿 ∈ (𝑌𝐻𝑊))
3023adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → 𝑄 ∈ (𝑊𝐻𝑇))
311, 2, 3, 5, 11, 19, 28, 20, 29, 17, 30catass 16347 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓) = (𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)))
3231oveq1d 6665 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾))
331, 2, 3, 5, 11, 19, 28, 20, 29catcocl 16346 . . . . . . 7 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓) ∈ (𝑋𝐻𝑊))
341, 2, 3, 5, 9, 11, 28, 15, 33, 17, 30catass 16347 . . . . . 6 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝑄(⟨𝑋, 𝑊⟩(comp‘𝐶)𝑇)(𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓))(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3532, 34eqtrd 2656 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
3635oveq1d 6665 . . . 4 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑇)𝐾)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3727, 36eqtr3d 2658 . . 3 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
3837mpteq2dva 4744 . 2 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
39 hofcl.m . . 3 𝑀 = (HomF𝐶)
401, 2, 3, 4, 6, 8, 10, 12, 14catcocl 16346 . . 3 (𝜑 → (𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃) ∈ (𝑆𝐻𝑋))
4139, 4, 1, 2, 10, 18, 6, 16, 3, 40, 24hof2val 16896 . 2 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ (((𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑇)𝑓)(⟨𝑆, 𝑋⟩(comp‘𝐶)𝑇)(𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃))))
4239, 4, 1, 2, 8, 21, 6, 16, 3, 12, 23hof2val 16896 . . . 4 (𝜑 → (𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
4339, 4, 1, 2, 10, 18, 8, 21, 3, 14, 22hof2val 16896 . . . 4 (𝜑 → (𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
4442, 43oveq12d 6668 . . 3 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
45 hofcl.d . . . 4 𝐷 = (SetCat‘𝑈)
46 hofcl.u . . . 4 (𝜑𝑈𝑉)
47 eqid 2622 . . . 4 (comp‘𝐷) = (comp‘𝐷)
48 eqid 2622 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4948, 1, 2, 10, 18homfval 16352 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
5048, 1homffn 16353 . . . . . . . 8 (Homf𝐶) Fn (𝐵 × 𝐵)
5150a1i 11 . . . . . . 7 (𝜑 → (Homf𝐶) Fn (𝐵 × 𝐵))
52 hofcl.h . . . . . . 7 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
53 df-f 5892 . . . . . . 7 ((Homf𝐶):(𝐵 × 𝐵)⟶𝑈 ↔ ((Homf𝐶) Fn (𝐵 × 𝐵) ∧ ran (Homf𝐶) ⊆ 𝑈))
5451, 52, 53sylanbrc 698 . . . . . 6 (𝜑 → (Homf𝐶):(𝐵 × 𝐵)⟶𝑈)
5554, 10, 18fovrnd 6806 . . . . 5 (𝜑 → (𝑋(Homf𝐶)𝑌) ∈ 𝑈)
5649, 55eqeltrrd 2702 . . . 4 (𝜑 → (𝑋𝐻𝑌) ∈ 𝑈)
5748, 1, 2, 8, 21homfval 16352 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) = (𝑍𝐻𝑊))
5854, 8, 21fovrnd 6806 . . . . 5 (𝜑 → (𝑍(Homf𝐶)𝑊) ∈ 𝑈)
5957, 58eqeltrrd 2702 . . . 4 (𝜑 → (𝑍𝐻𝑊) ∈ 𝑈)
6048, 1, 2, 6, 16homfval 16352 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) = (𝑆𝐻𝑇))
6154, 6, 16fovrnd 6806 . . . . 5 (𝜑 → (𝑆(Homf𝐶)𝑇) ∈ 𝑈)
6260, 61eqeltrrd 2702 . . . 4 (𝜑 → (𝑆𝐻𝑇) ∈ 𝑈)
631, 2, 3, 5, 9, 11, 28, 15, 33catcocl 16346 . . . . 5 ((𝜑𝑓 ∈ (𝑋𝐻𝑌)) → ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) ∈ (𝑍𝐻𝑊))
64 eqid 2622 . . . . 5 (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))
6563, 64fmptd 6385 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)):(𝑋𝐻𝑌)⟶(𝑍𝐻𝑊))
664adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝐶 ∈ Cat)
676adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑆𝐵)
688adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑍𝐵)
6916adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑇𝐵)
7012adantr 481 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑃 ∈ (𝑆𝐻𝑍))
7121adantr 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑊𝐵)
72 simpr 477 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑍𝐻𝑊))
7323adantr 481 . . . . . . 7 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → 𝑄 ∈ (𝑊𝐻𝑇))
741, 2, 3, 66, 68, 71, 69, 72, 73catcocl 16346 . . . . . 6 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) ∈ (𝑍𝐻𝑇))
751, 2, 3, 66, 67, 68, 69, 70, 74catcocl 16346 . . . . 5 ((𝜑𝑔 ∈ (𝑍𝐻𝑊)) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) ∈ (𝑆𝐻𝑇))
76 eqid 2622 . . . . 5 (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
7775, 76fmptd 6385 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)):(𝑍𝐻𝑊)⟶(𝑆𝐻𝑇))
7845, 46, 47, 56, 59, 62, 65, 77setcco 16733 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))))
79 eqidd 2623 . . . 4 (𝜑 → (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
80 eqidd 2623 . . . 4 (𝜑 → (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) = (𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
81 oveq2 6658 . . . . 5 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔) = (𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾)))
8281oveq1d 6665 . . . 4 (𝑔 = ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾) → ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃) = ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃))
8363, 79, 80, 82fmptco 6396 . . 3 (𝜑 → ((𝑔 ∈ (𝑍𝐻𝑊) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)𝑔)(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)) ∘ (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8444, 78, 833eqtrd 2660 . 2 (𝜑 → ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)) = (𝑓 ∈ (𝑋𝐻𝑌) ↦ ((𝑄(⟨𝑍, 𝑊⟩(comp‘𝐶)𝑇)((𝐿(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑊)𝑓)(⟨𝑍, 𝑋⟩(comp‘𝐶)𝑊)𝐾))(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑇)𝑃)))
8538, 41, 843eqtr4d 2666 1 (𝜑 → ((𝐾(⟨𝑆, 𝑍⟩(comp‘𝐶)𝑋)𝑃)(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑆, 𝑇⟩)(𝑄(⟨𝑌, 𝑊⟩(comp‘𝐶)𝑇)𝐿)) = ((𝑃(⟨𝑍, 𝑊⟩(2nd𝑀)⟨𝑆, 𝑇⟩)𝑄)(⟨(𝑋𝐻𝑌), (𝑍𝐻𝑊)⟩(comp‘𝐷)(𝑆𝐻𝑇))(𝐾(⟨𝑋, 𝑌⟩(2nd𝑀)⟨𝑍, 𝑊⟩)𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  cop 4183  cmpt 4729   × cxp 5112  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  2nd c2nd 7167  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Homf chomf 16327  oppCatcoppc 16371  SetCatcsetc 16725  HomFchof 16888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-homf 16331  df-setc 16726  df-hof 16890
This theorem is referenced by:  hofcl  16899
  Copyright terms: Public domain W3C validator