![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version GIF version |
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 8540.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5 | ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss 3590 | . . . . 5 ⊢ (𝑥 ⊊ ∪ 𝑥 ↔ (𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥)) | |
2 | unieq 4444 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → ∪ 𝑥 = ∪ ∅) | |
3 | uni0 4465 | . . . . . . . . . 10 ⊢ ∪ ∅ = ∅ | |
4 | 2, 3 | syl6req 2673 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ∅ = ∪ 𝑥) |
5 | eqtr 2641 | . . . . . . . . 9 ⊢ ((𝑥 = ∅ ∧ ∅ = ∪ 𝑥) → 𝑥 = ∪ 𝑥) | |
6 | 4, 5 | mpdan 702 | . . . . . . . 8 ⊢ (𝑥 = ∅ → 𝑥 = ∪ 𝑥) |
7 | 6 | necon3i 2826 | . . . . . . 7 ⊢ (𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅) |
8 | 7 | anim1i 592 | . . . . . 6 ⊢ ((𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
9 | 8 | ancoms 469 | . . . . 5 ⊢ ((𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥) → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
10 | 1, 9 | sylbi 207 | . . . 4 ⊢ (𝑥 ⊊ ∪ 𝑥 → (𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
11 | 10 | eximi 1762 | . . 3 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)) |
12 | eqid 2622 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
13 | eqid 2622 | . . . . 5 ⊢ (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) = (rec((𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}), ∅) ↾ ω) | |
14 | vex 3203 | . . . . 5 ⊢ 𝑥 ∈ V | |
15 | 12, 13, 14, 14 | inf3lem7 8531 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
16 | 15 | exlimiv 1858 | . . 3 ⊢ (∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → ω ∈ V) |
17 | 11, 16 | syl 17 | . 2 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V) |
18 | infeq5i 8533 | . 2 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) | |
19 | 17, 18 | impbii 199 | 1 ⊢ (∃𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ⊊ wpss 3575 ∅c0 3915 ∪ cuni 4436 ↦ cmpt 4729 ↾ cres 5116 ωcom 7065 reccrdg 7505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |