MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5 Structured version   Visualization version   Unicode version

Theorem infeq5 8534
Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 8540.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5  |-  ( E. x  x  C.  U. x  <->  om  e.  _V )

Proof of Theorem infeq5
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pss 3590 . . . . 5  |-  ( x 
C.  U. x  <->  ( x  C_ 
U. x  /\  x  =/=  U. x ) )
2 unieq 4444 . . . . . . . . . 10  |-  ( x  =  (/)  ->  U. x  =  U. (/) )
3 uni0 4465 . . . . . . . . . 10  |-  U. (/)  =  (/)
42, 3syl6req 2673 . . . . . . . . 9  |-  ( x  =  (/)  ->  (/)  =  U. x )
5 eqtr 2641 . . . . . . . . 9  |-  ( ( x  =  (/)  /\  (/)  =  U. x )  ->  x  =  U. x )
64, 5mpdan 702 . . . . . . . 8  |-  ( x  =  (/)  ->  x  = 
U. x )
76necon3i 2826 . . . . . . 7  |-  ( x  =/=  U. x  ->  x  =/=  (/) )
87anim1i 592 . . . . . 6  |-  ( ( x  =/=  U. x  /\  x  C_  U. x
)  ->  ( x  =/=  (/)  /\  x  C_  U. x ) )
98ancoms 469 . . . . 5  |-  ( ( x  C_  U. x  /\  x  =/=  U. x
)  ->  ( x  =/=  (/)  /\  x  C_  U. x ) )
101, 9sylbi 207 . . . 4  |-  ( x 
C.  U. x  ->  (
x  =/=  (/)  /\  x  C_ 
U. x ) )
1110eximi 1762 . . 3  |-  ( E. x  x  C.  U. x  ->  E. x ( x  =/=  (/)  /\  x  C_  U. x ) )
12 eqid 2622 . . . . 5  |-  ( y  e.  _V  |->  { w  e.  x  |  (
w  i^i  x )  C_  y } )  =  ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } )
13 eqid 2622 . . . . 5  |-  ( rec ( ( y  e. 
_V  |->  { w  e.  x  |  ( w  i^i  x )  C_  y } ) ,  (/) )  |`  om )  =  ( rec ( ( y  e.  _V  |->  { w  e.  x  |  ( w  i^i  x
)  C_  y }
) ,  (/) )  |`  om )
14 vex 3203 . . . . 5  |-  x  e. 
_V
1512, 13, 14, 14inf3lem7 8531 . . . 4  |-  ( ( x  =/=  (/)  /\  x  C_ 
U. x )  ->  om  e.  _V )
1615exlimiv 1858 . . 3  |-  ( E. x ( x  =/=  (/)  /\  x  C_  U. x
)  ->  om  e.  _V )
1711, 16syl 17 . 2  |-  ( E. x  x  C.  U. x  ->  om  e.  _V )
18 infeq5i 8533 . 2  |-  ( om  e.  _V  ->  E. x  x  C.  U. x )
1917, 18impbii 199 1  |-  ( E. x  x  C.  U. x  <->  om  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574    C. wpss 3575   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    |` cres 5116   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator