| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infeq5 | Structured version Visualization version Unicode version | ||
| Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex 8540.) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| infeq5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pss 3590 |
. . . . 5
| |
| 2 | unieq 4444 |
. . . . . . . . . 10
| |
| 3 | uni0 4465 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | syl6req 2673 |
. . . . . . . . 9
|
| 5 | eqtr 2641 |
. . . . . . . . 9
| |
| 6 | 4, 5 | mpdan 702 |
. . . . . . . 8
|
| 7 | 6 | necon3i 2826 |
. . . . . . 7
|
| 8 | 7 | anim1i 592 |
. . . . . 6
|
| 9 | 8 | ancoms 469 |
. . . . 5
|
| 10 | 1, 9 | sylbi 207 |
. . . 4
|
| 11 | 10 | eximi 1762 |
. . 3
|
| 12 | eqid 2622 |
. . . . 5
| |
| 13 | eqid 2622 |
. . . . 5
| |
| 14 | vex 3203 |
. . . . 5
| |
| 15 | 12, 13, 14, 14 | inf3lem7 8531 |
. . . 4
|
| 16 | 15 | exlimiv 1858 |
. . 3
|
| 17 | 11, 16 | syl 17 |
. 2
|
| 18 | infeq5i 8533 |
. 2
| |
| 19 | 17, 18 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |