![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Structured version Visualization version GIF version |
Description: Lemma for infpssr 9130. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
Ref | Expression |
---|---|
infpssrlem3 | ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 7530 | . . . 4 ⊢ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω | |
2 | infpssrlem.e | . . . . 5 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
3 | 2 | fneq1i 5985 | . . . 4 ⊢ (𝐺 Fn ω ↔ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 221 | . . 3 ⊢ 𝐺 Fn ω |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 Fn ω) |
6 | fveq2 6191 | . . . . . 6 ⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) | |
7 | 6 | eleq1d 2686 | . . . . 5 ⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴)) |
8 | fveq2 6191 | . . . . . 6 ⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) | |
9 | 8 | eleq1d 2686 | . . . . 5 ⊢ (𝑐 = 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘𝑏) ∈ 𝐴)) |
10 | fveq2 6191 | . . . . . 6 ⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) | |
11 | 10 | eleq1d 2686 | . . . . 5 ⊢ (𝑐 = suc 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴)) |
12 | infpssrlem.a | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
13 | infpssrlem.c | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) | |
14 | infpssrlem.d | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
15 | 12, 13, 14, 2 | infpssrlem1 9125 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
16 | 14 | eldifad 3586 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
17 | 15, 16 | eqeltrd 2701 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ 𝐴) |
18 | 12 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
19 | f1ocnv 6149 | . . . . . . . . . 10 ⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) | |
20 | f1of 6137 | . . . . . . . . . 10 ⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) | |
21 | 13, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
22 | 21 | ffvelrnda 6359 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐵) |
23 | 18, 22 | sseldd 3604 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴) |
24 | 12, 13, 14, 2 | infpssrlem2 9126 | . . . . . . . 8 ⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
25 | 24 | eleq1d 2686 | . . . . . . 7 ⊢ (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴)) |
26 | 23, 25 | syl5ibr 236 | . . . . . 6 ⊢ (𝑏 ∈ ω → ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴)) |
27 | 26 | expd 452 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝜑 → ((𝐺‘𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴))) |
28 | 7, 9, 11, 17, 27 | finds2 7094 | . . . 4 ⊢ (𝑐 ∈ ω → (𝜑 → (𝐺‘𝑐) ∈ 𝐴)) |
29 | 28 | com12 32 | . . 3 ⊢ (𝜑 → (𝑐 ∈ ω → (𝐺‘𝑐) ∈ 𝐴)) |
30 | 29 | ralrimiv 2965 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴) |
31 | ffnfv 6388 | . 2 ⊢ (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴)) | |
32 | 5, 30, 31 | sylanbrc 698 | 1 ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∖ cdif 3571 ⊆ wss 3574 ∅c0 3915 ◡ccnv 5113 ↾ cres 5116 suc csuc 5725 Fn wfn 5883 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 ωcom 7065 reccrdg 7505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
This theorem is referenced by: infpssrlem4 9128 infpssrlem5 9129 |
Copyright terms: Public domain | W3C validator |