MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem5 Structured version   Visualization version   GIF version

Theorem infpssrlem5 9129
Description: Lemma for infpssr 9130. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem5 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))

Proof of Theorem infpssrlem5
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infpssrlem.a . . . 4 (𝜑𝐵𝐴)
2 infpssrlem.c . . . 4 (𝜑𝐹:𝐵1-1-onto𝐴)
3 infpssrlem.d . . . 4 (𝜑𝐶 ∈ (𝐴𝐵))
4 infpssrlem.e . . . 4 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
51, 2, 3, 4infpssrlem3 9127 . . 3 (𝜑𝐺:ω⟶𝐴)
6 simpll 790 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝜑)
7 simplrr 801 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑐 ∈ ω)
8 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → 𝑏𝑐)
91, 2, 3, 4infpssrlem4 9128 . . . . . . . . . 10 ((𝜑𝑐 ∈ ω ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
106, 7, 8, 9syl3anc 1326 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑐) ≠ (𝐺𝑏))
1110necomd 2849 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑏𝑐) → (𝐺𝑏) ≠ (𝐺𝑐))
12 simpll 790 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝜑)
13 simplrl 800 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑏 ∈ ω)
14 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → 𝑐𝑏)
151, 2, 3, 4infpssrlem4 9128 . . . . . . . . 9 ((𝜑𝑏 ∈ ω ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1612, 13, 14, 15syl3anc 1326 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐))
1711, 16jaodan 826 . . . . . . 7 (((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ (𝑏𝑐𝑐𝑏)) → (𝐺𝑏) ≠ (𝐺𝑐))
1817ex 450 . . . . . 6 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝑏𝑐𝑐𝑏) → (𝐺𝑏) ≠ (𝐺𝑐)))
1918necon2bd 2810 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → ¬ (𝑏𝑐𝑐𝑏)))
20 nnord 7073 . . . . . . 7 (𝑏 ∈ ω → Ord 𝑏)
21 nnord 7073 . . . . . . 7 (𝑐 ∈ ω → Ord 𝑐)
22 ordtri3 5759 . . . . . . 7 ((Ord 𝑏 ∧ Ord 𝑐) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2320, 21, 22syl2an 494 . . . . . 6 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2423adantl 482 . . . . 5 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → (𝑏 = 𝑐 ↔ ¬ (𝑏𝑐𝑐𝑏)))
2519, 24sylibrd 249 . . . 4 ((𝜑 ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
2625ralrimivva 2971 . . 3 (𝜑 → ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐))
27 dff13 6512 . . 3 (𝐺:ω–1-1𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑏 ∈ ω ∀𝑐 ∈ ω ((𝐺𝑏) = (𝐺𝑐) → 𝑏 = 𝑐)))
285, 26, 27sylanbrc 698 . 2 (𝜑𝐺:ω–1-1𝐴)
29 f1domg 7975 . 2 (𝐴𝑉 → (𝐺:ω–1-1𝐴 → ω ≼ 𝐴))
3028, 29syl5com 31 1 (𝜑 → (𝐴𝑉 → ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  wss 3574   class class class wbr 4653  ccnv 5113  cres 5116  Ord word 5722  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  ωcom 7065  reccrdg 7505  cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-dom 7957
This theorem is referenced by:  infpssr  9130
  Copyright terms: Public domain W3C validator