| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for infpssr 9130. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| infpssrlem.a |
|
| infpssrlem.c |
|
| infpssrlem.d |
|
| infpssrlem.e |
|
| Ref | Expression |
|---|---|
| infpssrlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 7530 |
. . . 4
| |
| 2 | infpssrlem.e |
. . . . 5
| |
| 3 | 2 | fneq1i 5985 |
. . . 4
|
| 4 | 1, 3 | mpbir 221 |
. . 3
|
| 5 | 4 | a1i 11 |
. 2
|
| 6 | fveq2 6191 |
. . . . . 6
| |
| 7 | 6 | eleq1d 2686 |
. . . . 5
|
| 8 | fveq2 6191 |
. . . . . 6
| |
| 9 | 8 | eleq1d 2686 |
. . . . 5
|
| 10 | fveq2 6191 |
. . . . . 6
| |
| 11 | 10 | eleq1d 2686 |
. . . . 5
|
| 12 | infpssrlem.a |
. . . . . . 7
| |
| 13 | infpssrlem.c |
. . . . . . 7
| |
| 14 | infpssrlem.d |
. . . . . . 7
| |
| 15 | 12, 13, 14, 2 | infpssrlem1 9125 |
. . . . . 6
|
| 16 | 14 | eldifad 3586 |
. . . . . 6
|
| 17 | 15, 16 | eqeltrd 2701 |
. . . . 5
|
| 18 | 12 | adantr 481 |
. . . . . . . 8
|
| 19 | f1ocnv 6149 |
. . . . . . . . . 10
| |
| 20 | f1of 6137 |
. . . . . . . . . 10
| |
| 21 | 13, 19, 20 | 3syl 18 |
. . . . . . . . 9
|
| 22 | 21 | ffvelrnda 6359 |
. . . . . . . 8
|
| 23 | 18, 22 | sseldd 3604 |
. . . . . . 7
|
| 24 | 12, 13, 14, 2 | infpssrlem2 9126 |
. . . . . . . 8
|
| 25 | 24 | eleq1d 2686 |
. . . . . . 7
|
| 26 | 23, 25 | syl5ibr 236 |
. . . . . 6
|
| 27 | 26 | expd 452 |
. . . . 5
|
| 28 | 7, 9, 11, 17, 27 | finds2 7094 |
. . . 4
|
| 29 | 28 | com12 32 |
. . 3
|
| 30 | 29 | ralrimiv 2965 |
. 2
|
| 31 | ffnfv 6388 |
. 2
| |
| 32 | 5, 30, 31 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
| This theorem is referenced by: infpssrlem4 9128 infpssrlem5 9129 |
| Copyright terms: Public domain | W3C validator |