MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem3 Structured version   Visualization version   Unicode version

Theorem infpssrlem3 9127
Description: Lemma for infpssr 9130. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a  |-  ( ph  ->  B  C_  A )
infpssrlem.c  |-  ( ph  ->  F : B -1-1-onto-> A )
infpssrlem.d  |-  ( ph  ->  C  e.  ( A 
\  B ) )
infpssrlem.e  |-  G  =  ( rec ( `' F ,  C )  |`  om )
Assertion
Ref Expression
infpssrlem3  |-  ( ph  ->  G : om --> A )

Proof of Theorem infpssrlem3
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 7530 . . . 4  |-  ( rec ( `' F ,  C )  |`  om )  Fn  om
2 infpssrlem.e . . . . 5  |-  G  =  ( rec ( `' F ,  C )  |`  om )
32fneq1i 5985 . . . 4  |-  ( G  Fn  om  <->  ( rec ( `' F ,  C )  |`  om )  Fn  om )
41, 3mpbir 221 . . 3  |-  G  Fn  om
54a1i 11 . 2  |-  ( ph  ->  G  Fn  om )
6 fveq2 6191 . . . . . 6  |-  ( c  =  (/)  ->  ( G `
 c )  =  ( G `  (/) ) )
76eleq1d 2686 . . . . 5  |-  ( c  =  (/)  ->  ( ( G `  c )  e.  A  <->  ( G `  (/) )  e.  A
) )
8 fveq2 6191 . . . . . 6  |-  ( c  =  b  ->  ( G `  c )  =  ( G `  b ) )
98eleq1d 2686 . . . . 5  |-  ( c  =  b  ->  (
( G `  c
)  e.  A  <->  ( G `  b )  e.  A
) )
10 fveq2 6191 . . . . . 6  |-  ( c  =  suc  b  -> 
( G `  c
)  =  ( G `
 suc  b )
)
1110eleq1d 2686 . . . . 5  |-  ( c  =  suc  b  -> 
( ( G `  c )  e.  A  <->  ( G `  suc  b
)  e.  A ) )
12 infpssrlem.a . . . . . . 7  |-  ( ph  ->  B  C_  A )
13 infpssrlem.c . . . . . . 7  |-  ( ph  ->  F : B -1-1-onto-> A )
14 infpssrlem.d . . . . . . 7  |-  ( ph  ->  C  e.  ( A 
\  B ) )
1512, 13, 14, 2infpssrlem1 9125 . . . . . 6  |-  ( ph  ->  ( G `  (/) )  =  C )
1614eldifad 3586 . . . . . 6  |-  ( ph  ->  C  e.  A )
1715, 16eqeltrd 2701 . . . . 5  |-  ( ph  ->  ( G `  (/) )  e.  A )
1812adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( G `  b )  e.  A
)  ->  B  C_  A
)
19 f1ocnv 6149 . . . . . . . . . 10  |-  ( F : B -1-1-onto-> A  ->  `' F : A -1-1-onto-> B )
20 f1of 6137 . . . . . . . . . 10  |-  ( `' F : A -1-1-onto-> B  ->  `' F : A --> B )
2113, 19, 203syl 18 . . . . . . . . 9  |-  ( ph  ->  `' F : A --> B )
2221ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  ( G `  b )  e.  A
)  ->  ( `' F `  ( G `  b ) )  e.  B )
2318, 22sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( G `  b )  e.  A
)  ->  ( `' F `  ( G `  b ) )  e.  A )
2412, 13, 14, 2infpssrlem2 9126 . . . . . . . 8  |-  ( b  e.  om  ->  ( G `  suc  b )  =  ( `' F `  ( G `  b
) ) )
2524eleq1d 2686 . . . . . . 7  |-  ( b  e.  om  ->  (
( G `  suc  b )  e.  A  <->  ( `' F `  ( G `
 b ) )  e.  A ) )
2623, 25syl5ibr 236 . . . . . 6  |-  ( b  e.  om  ->  (
( ph  /\  ( G `  b )  e.  A )  ->  ( G `  suc  b )  e.  A ) )
2726expd 452 . . . . 5  |-  ( b  e.  om  ->  ( ph  ->  ( ( G `
 b )  e.  A  ->  ( G `  suc  b )  e.  A ) ) )
287, 9, 11, 17, 27finds2 7094 . . . 4  |-  ( c  e.  om  ->  ( ph  ->  ( G `  c )  e.  A
) )
2928com12 32 . . 3  |-  ( ph  ->  ( c  e.  om  ->  ( G `  c
)  e.  A ) )
3029ralrimiv 2965 . 2  |-  ( ph  ->  A. c  e.  om  ( G `  c )  e.  A )
31 ffnfv 6388 . 2  |-  ( G : om --> A  <->  ( G  Fn  om  /\  A. c  e.  om  ( G `  c )  e.  A
) )
325, 30, 31sylanbrc 698 1  |-  ( ph  ->  G : om --> A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   (/)c0 3915   `'ccnv 5113    |` cres 5116   suc csuc 5725    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  infpssrlem4  9128  infpssrlem5  9129
  Copyright terms: Public domain W3C validator