Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intnatN Structured version   Visualization version   GIF version

Theorem intnatN 34693
Description: If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
intnat.b 𝐵 = (Base‘𝐾)
intnat.l = (le‘𝐾)
intnat.m = (meet‘𝐾)
intnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
intnatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)

Proof of Theorem intnatN
StepHypRef Expression
1 hlatl 34647 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1082 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
32ad2antrr 762 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ AtLat)
4 eqid 2622 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5 intnat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atn0 34595 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
73, 6sylancom 701 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
87ex 450 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → (𝑋 𝑌) ≠ (0.‘𝐾)))
9 simpll1 1100 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ HL)
10 hllat 34650 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
119, 10syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ Lat)
12 simpll2 1101 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑋𝐵)
13 simpll3 1102 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐵)
14 intnat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
15 intnat.m . . . . . . . 8 = (meet‘𝐾)
1614, 15latmcom 17075 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1711, 12, 13, 16syl3anc 1326 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (𝑌 𝑋))
18 simplr 792 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → ¬ 𝑌 𝑋)
199, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ AtLat)
20 simpr 477 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐴)
21 intnat.l . . . . . . . . 9 = (le‘𝐾)
2214, 21, 15, 4, 5atnle 34604 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑌𝐴𝑋𝐵) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2319, 20, 12, 22syl3anc 1326 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2418, 23mpbid 222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑌 𝑋) = (0.‘𝐾))
2517, 24eqtrd 2656 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (0.‘𝐾))
2625ex 450 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → (𝑌𝐴 → (𝑋 𝑌) = (0.‘𝐾)))
2726necon3ad 2807 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ≠ (0.‘𝐾) → ¬ 𝑌𝐴))
288, 27syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → ¬ 𝑌𝐴))
2928impr 649 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  meetcmee 16945  0.cp0 17037  Latclat 17045  Atomscatm 34550  AtLatcal 34551  HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator