MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 19993
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6191 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3syl6eqr 2674 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6191 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6syl6eqr 2674 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 6667 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpt2eq123dv 6717 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 19972 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
11 df-ov 6653 . . . . . . . 8 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
12 fvrn0 6216 . . . . . . . 8 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1311, 12eqeltri 2697 . . . . . . 7 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1413rgen2w 2925 . . . . . 6 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
15 eqid 2622 . . . . . . 7 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
1615fmpt2 7237 . . . . . 6 (∀𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) ↔ (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}))
1714, 16mpbi 220 . . . . 5 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅})
18 fvex 6201 . . . . . . 7 (Base‘𝑊) ∈ V
193, 18eqeltri 2697 . . . . . 6 𝑉 ∈ V
2019, 19xpex 6962 . . . . 5 (𝑉 × 𝑉) ∈ V
21 fvex 6201 . . . . . . . 8 (·𝑖𝑊) ∈ V
226, 21eqeltri 2697 . . . . . . 7 , ∈ V
2322rnex 7100 . . . . . 6 ran , ∈ V
24 p0ex 4853 . . . . . 6 {∅} ∈ V
2523, 24unex 6956 . . . . 5 (ran , ∪ {∅}) ∈ V
26 fex2 7121 . . . . 5 (((𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}) ∧ (𝑉 × 𝑉) ∈ V ∧ (ran , ∪ {∅}) ∈ V) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V)
2717, 20, 25, 26mp3an 1424 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
289, 10, 27fvmpt 6282 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
29 fvprc 6185 . . . . 5 𝑊 ∈ V → (·if𝑊) = ∅)
30 mpt20 6725 . . . . 5 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)) = ∅
3129, 30syl6eqr 2674 . . . 4 𝑊 ∈ V → (·if𝑊) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
32 fvprc 6185 . . . . . 6 𝑊 ∈ V → (Base‘𝑊) = ∅)
333, 32syl5eq 2668 . . . . 5 𝑊 ∈ V → 𝑉 = ∅)
34 mpt2eq12 6715 . . . . 5 ((𝑉 = ∅ ∧ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
3533, 33, 34syl2anc 693 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)))
3631, 35eqtr4d 2659 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
3728, 36pm2.61i 176 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
381, 37eqtri 2644 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  c0 3915  {csn 4177  cop 4183   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  ·𝑖cip 15946  ·ifcipf 19970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ipf 19972
This theorem is referenced by:  ipfval  19994  ipfeq  19995  ipffn  19996  phlipf  19997  phssip  20003
  Copyright terms: Public domain W3C validator