Step | Hyp | Ref
| Expression |
1 | | ipffval.3 |
. 2
⊢ · =
(·if‘𝑊) |
2 | | fveq2 6191 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) |
3 | | ipffval.1 |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
4 | 2, 3 | syl6eqr 2674 |
. . . . 5
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
5 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑔 = 𝑊 →
(·𝑖‘𝑔) =
(·𝑖‘𝑊)) |
6 | | ipffval.2 |
. . . . . . 7
⊢ , =
(·𝑖‘𝑊) |
7 | 5, 6 | syl6eqr 2674 |
. . . . . 6
⊢ (𝑔 = 𝑊 →
(·𝑖‘𝑔) = , ) |
8 | 7 | oveqd 6667 |
. . . . 5
⊢ (𝑔 = 𝑊 → (𝑥(·𝑖‘𝑔)𝑦) = (𝑥 , 𝑦)) |
9 | 4, 4, 8 | mpt2eq123dv 6717 |
. . . 4
⊢ (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
10 | | df-ipf 19972 |
. . . 4
⊢
·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
11 | | df-ov 6653 |
. . . . . . . 8
⊢ (𝑥 , 𝑦) = ( , ‘〈𝑥, 𝑦〉) |
12 | | fvrn0 6216 |
. . . . . . . 8
⊢ ( ,
‘〈𝑥, 𝑦〉) ∈ (ran , ∪
{∅}) |
13 | 11, 12 | eqeltri 2697 |
. . . . . . 7
⊢ (𝑥 , 𝑦) ∈ (ran , ∪
{∅}) |
14 | 13 | rgen2w 2925 |
. . . . . 6
⊢
∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪
{∅}) |
15 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
16 | 15 | fmpt2 7237 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) ↔
(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪
{∅})) |
17 | 14, 16 | mpbi 220 |
. . . . 5
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪
{∅}) |
18 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝑊)
∈ V |
19 | 3, 18 | eqeltri 2697 |
. . . . . 6
⊢ 𝑉 ∈ V |
20 | 19, 19 | xpex 6962 |
. . . . 5
⊢ (𝑉 × 𝑉) ∈ V |
21 | | fvex 6201 |
. . . . . . . 8
⊢
(·𝑖‘𝑊) ∈ V |
22 | 6, 21 | eqeltri 2697 |
. . . . . . 7
⊢ , ∈
V |
23 | 22 | rnex 7100 |
. . . . . 6
⊢ ran , ∈
V |
24 | | p0ex 4853 |
. . . . . 6
⊢ {∅}
∈ V |
25 | 23, 24 | unex 6956 |
. . . . 5
⊢ (ran
, ∪
{∅}) ∈ V |
26 | | fex2 7121 |
. . . . 5
⊢ (((𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)):(𝑉 × 𝑉)⟶(ran , ∪ {∅}) ∧
(𝑉 × 𝑉) ∈ V ∧ (ran , ∪
{∅}) ∈ V) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V) |
27 | 17, 20, 25, 26 | mp3an 1424 |
. . . 4
⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V |
28 | 9, 10, 27 | fvmpt 6282 |
. . 3
⊢ (𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
29 | | fvprc 6185 |
. . . . 5
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = ∅) |
30 | | mpt20 6725 |
. . . . 5
⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦)) = ∅ |
31 | 29, 30 | syl6eqr 2674 |
. . . 4
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
32 | | fvprc 6185 |
. . . . . 6
⊢ (¬
𝑊 ∈ V →
(Base‘𝑊) =
∅) |
33 | 3, 32 | syl5eq 2668 |
. . . . 5
⊢ (¬
𝑊 ∈ V → 𝑉 = ∅) |
34 | | mpt2eq12 6715 |
. . . . 5
⊢ ((𝑉 = ∅ ∧ 𝑉 = ∅) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
35 | 33, 33, 34 | syl2anc 693 |
. . . 4
⊢ (¬
𝑊 ∈ V → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 , 𝑦))) |
36 | 31, 35 | eqtr4d 2659 |
. . 3
⊢ (¬
𝑊 ∈ V →
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
37 | 28, 36 | pm2.61i 176 |
. 2
⊢
(·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
38 | 1, 37 | eqtri 2644 |
1
⊢ · =
(𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |