MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   Unicode version

Theorem ipffval 19993
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.)
Hypotheses
Ref Expression
ipffval.1  |-  V  =  ( Base `  W
)
ipffval.2  |-  .,  =  ( .i `  W )
ipffval.3  |-  .x.  =  ( .if `  W
)
Assertion
Ref Expression
ipffval  |-  .x.  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y
) )
Distinct variable groups:    x, y,  .,    x, V, y    x, W, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem ipffval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2  |-  .x.  =  ( .if `  W
)
2 fveq2 6191 . . . . . 6  |-  ( g  =  W  ->  ( Base `  g )  =  ( Base `  W
) )
3 ipffval.1 . . . . . 6  |-  V  =  ( Base `  W
)
42, 3syl6eqr 2674 . . . . 5  |-  ( g  =  W  ->  ( Base `  g )  =  V )
5 fveq2 6191 . . . . . . 7  |-  ( g  =  W  ->  ( .i `  g )  =  ( .i `  W
) )
6 ipffval.2 . . . . . . 7  |-  .,  =  ( .i `  W )
75, 6syl6eqr 2674 . . . . . 6  |-  ( g  =  W  ->  ( .i `  g )  = 
.,  )
87oveqd 6667 . . . . 5  |-  ( g  =  W  ->  (
x ( .i `  g ) y )  =  ( x  .,  y ) )
94, 4, 8mpt2eq123dv 6717 . . . 4  |-  ( g  =  W  ->  (
x  e.  ( Base `  g ) ,  y  e.  ( Base `  g
)  |->  ( x ( .i `  g ) y ) )  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y
) ) )
10 df-ipf 19972 . . . 4  |-  .if 
=  ( g  e. 
_V  |->  ( x  e.  ( Base `  g
) ,  y  e.  ( Base `  g
)  |->  ( x ( .i `  g ) y ) ) )
11 df-ov 6653 . . . . . . . 8  |-  ( x 
.,  y )  =  (  .,  `  <. x ,  y >. )
12 fvrn0 6216 . . . . . . . 8  |-  (  .,  ` 
<. x ,  y >.
)  e.  ( ran  .,  u.  { (/) } )
1311, 12eqeltri 2697 . . . . . . 7  |-  ( x 
.,  y )  e.  ( ran  .,  u.  {
(/) } )
1413rgen2w 2925 . . . . . 6  |-  A. x  e.  V  A. y  e.  V  ( x  .,  y )  e.  ( ran  .,  u.  { (/) } )
15 eqid 2622 . . . . . . 7  |-  ( x  e.  V ,  y  e.  V  |->  ( x 
.,  y ) )  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y ) )
1615fmpt2 7237 . . . . . 6  |-  ( A. x  e.  V  A. y  e.  V  (
x  .,  y )  e.  ( ran  .,  u.  {
(/) } )  <->  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y ) ) : ( V  X.  V
) --> ( ran  .,  u.  {
(/) } ) )
1714, 16mpbi 220 . . . . 5  |-  ( x  e.  V ,  y  e.  V  |->  ( x 
.,  y ) ) : ( V  X.  V ) --> ( ran  .,  u.  { (/) } )
18 fvex 6201 . . . . . . 7  |-  ( Base `  W )  e.  _V
193, 18eqeltri 2697 . . . . . 6  |-  V  e. 
_V
2019, 19xpex 6962 . . . . 5  |-  ( V  X.  V )  e. 
_V
21 fvex 6201 . . . . . . . 8  |-  ( .i
`  W )  e. 
_V
226, 21eqeltri 2697 . . . . . . 7  |-  .,  e.  _V
2322rnex 7100 . . . . . 6  |-  ran  .,  e.  _V
24 p0ex 4853 . . . . . 6  |-  { (/) }  e.  _V
2523, 24unex 6956 . . . . 5  |-  ( ran  .,  u.  { (/) } )  e.  _V
26 fex2 7121 . . . . 5  |-  ( ( ( x  e.  V ,  y  e.  V  |->  ( x  .,  y
) ) : ( V  X.  V ) --> ( ran  .,  u.  {
(/) } )  /\  ( V  X.  V )  e. 
_V  /\  ( ran  .,  u.  { (/) } )  e.  _V )  -> 
( x  e.  V ,  y  e.  V  |->  ( x  .,  y
) )  e.  _V )
2717, 20, 25, 26mp3an 1424 . . . 4  |-  ( x  e.  V ,  y  e.  V  |->  ( x 
.,  y ) )  e.  _V
289, 10, 27fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( .if `  W )  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y ) ) )
29 fvprc 6185 . . . . 5  |-  ( -.  W  e.  _V  ->  ( .if `  W
)  =  (/) )
30 mpt20 6725 . . . . 5  |-  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  .,  y ) )  =  (/)
3129, 30syl6eqr 2674 . . . 4  |-  ( -.  W  e.  _V  ->  ( .if `  W
)  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  .,  y ) ) )
32 fvprc 6185 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
333, 32syl5eq 2668 . . . . 5  |-  ( -.  W  e.  _V  ->  V  =  (/) )
34 mpt2eq12 6715 . . . . 5  |-  ( ( V  =  (/)  /\  V  =  (/) )  ->  (
x  e.  V , 
y  e.  V  |->  ( x  .,  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  .,  y ) ) )
3533, 33, 34syl2anc 693 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  V , 
y  e.  V  |->  ( x  .,  y ) )  =  ( x  e.  (/) ,  y  e.  (/)  |->  ( x  .,  y ) ) )
3631, 35eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  ( .if `  W
)  =  ( x  e.  V ,  y  e.  V  |->  ( x 
.,  y ) ) )
3728, 36pm2.61i 176 . 2  |-  ( .if `  W )  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y ) )
381, 37eqtri 2644 1  |-  .x.  =  ( x  e.  V ,  y  e.  V  |->  ( x  .,  y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   .icip 15946   .ifcipf 19970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-ipf 19972
This theorem is referenced by:  ipfval  19994  ipfeq  19995  ipffn  19996  phlipf  19997  phssip  20003
  Copyright terms: Public domain W3C validator