MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   GIF version

Theorem isacs1i 16318
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐹,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem isacs1i
Dummy variables 𝑎 𝑡 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4 {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋
21a1i 11 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋)
3 inss1 3833 . . . . . 6 (𝑋 𝑡) ⊆ 𝑋
4 elpw2g 4827 . . . . . 6 (𝑋𝑉 → ((𝑋 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 𝑡) ⊆ 𝑋))
53, 4mpbiri 248 . . . . 5 (𝑋𝑉 → (𝑋 𝑡) ∈ 𝒫 𝑋)
65ad2antrr 762 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ 𝒫 𝑋)
7 imassrn 5477 . . . . . . . . 9 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ ran 𝐹
8 frn 6053 . . . . . . . . . 10 (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋)
98adantl 482 . . . . . . . . 9 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋)
107, 9syl5ss 3614 . . . . . . . 8 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
1110unissd 4462 . . . . . . 7 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
12 unipw 4918 . . . . . . 7 𝒫 𝑋 = 𝑋
1311, 12syl6sseq 3651 . . . . . 6 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
1413adantr 481 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
15 inss2 3834 . . . . . . . . . . . . . 14 (𝑋 𝑡) ⊆ 𝑡
16 intss1 4492 . . . . . . . . . . . . . 14 (𝑎𝑡 𝑡𝑎)
1715, 16syl5ss 3614 . . . . . . . . . . . . 13 (𝑎𝑡 → (𝑋 𝑡) ⊆ 𝑎)
1817adantl 482 . . . . . . . . . . . 12 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝑋 𝑡) ⊆ 𝑎)
19 sspwb 4917 . . . . . . . . . . . 12 ((𝑋 𝑡) ⊆ 𝑎 ↔ 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
2018, 19sylib 208 . . . . . . . . . . 11 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
21 ssrin 3838 . . . . . . . . . . 11 (𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎 → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
2220, 21syl 17 . . . . . . . . . 10 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
23 imass2 5501 . . . . . . . . . 10 ((𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2422, 23syl 17 . . . . . . . . 9 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2524unissd 4462 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
26 ssel2 3598 . . . . . . . . . 10 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
27 pweq 4161 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎)
2827ineq1d 3813 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin))
2928imaeq2d 5466 . . . . . . . . . . . . . 14 (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
3029unieqd 4446 . . . . . . . . . . . . 13 (𝑠 = 𝑎 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
31 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑎𝑠 = 𝑎)
3230, 31sseq12d 3634 . . . . . . . . . . . 12 (𝑠 = 𝑎 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3332elrab 3363 . . . . . . . . . . 11 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3433simprbi 480 . . . . . . . . . 10 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3526, 34syl 17 . . . . . . . . 9 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3635adantll 750 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3725, 36sstrd 3613 . . . . . . 7 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
3837ralrimiva 2966 . . . . . 6 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
39 ssint 4493 . . . . . 6 ( (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4038, 39sylibr 224 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡)
4114, 40ssind 3837 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡))
42 pweq 4161 . . . . . . . . 9 (𝑠 = (𝑋 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 𝑡))
4342ineq1d 3813 . . . . . . . 8 (𝑠 = (𝑋 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 𝑡) ∩ Fin))
4443imaeq2d 5466 . . . . . . 7 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
4544unieqd 4446 . . . . . 6 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
46 id 22 . . . . . 6 (𝑠 = (𝑋 𝑡) → 𝑠 = (𝑋 𝑡))
4745, 46sseq12d 3634 . . . . 5 (𝑠 = (𝑋 𝑡) → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
4847elrab 3363 . . . 4 ((𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ((𝑋 𝑡) ∈ 𝒫 𝑋 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
496, 41, 48sylanbrc 698 . . 3 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
502, 49ismred2 16263 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋))
51 fssxp 6060 . . . 4 (𝐹:𝒫 𝑋⟶𝒫 𝑋𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋))
52 pwexg 4850 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
53 xpexg 6960 . . . . 5 ((𝒫 𝑋 ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
5452, 52, 53syl2anc 693 . . . 4 (𝑋𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
55 ssexg 4804 . . . 4 ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V)
5651, 54, 55syl2anr 495 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V)
57 simpr 477 . . . 4 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
58 pweq 4161 . . . . . . . . . 10 (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡)
5958ineq1d 3813 . . . . . . . . 9 (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin))
6059imaeq2d 5466 . . . . . . . 8 (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6160unieqd 4446 . . . . . . 7 (𝑠 = 𝑡 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
62 id 22 . . . . . . 7 (𝑠 = 𝑡𝑠 = 𝑡)
6361, 62sseq12d 3634 . . . . . 6 (𝑠 = 𝑡 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6463elrab3 3364 . . . . 5 (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6564rgen 2922 . . . 4 𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)
6657, 65jctir 561 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
67 feq1 6026 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
68 imaeq1 5461 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6968unieqd 4446 . . . . . . . 8 (𝑓 = 𝐹 (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
7069sseq1d 3632 . . . . . . 7 (𝑓 = 𝐹 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
7170bibi2d 332 . . . . . 6 (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
7271ralbidv 2986 . . . . 5 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
7367, 72anbi12d 747 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7473spcegv 3294 . . 3 (𝐹 ∈ V → ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7556, 66, 74sylc 65 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
76 isacs 16312 . 2 ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋) ↔ ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7750, 75, 76sylanbrc 698 1 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   cint 4475   × cxp 5112  ran crn 5115  cima 5117  wf 5884  cfv 5888  Fincfn 7955  Moorecmre 16242  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-acs 16249
This theorem is referenced by:  acsfn  16320
  Copyright terms: Public domain W3C validator