| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 3687 |
. . . 4
⊢ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ⊆
𝒫 𝑋 |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋) |
| 3 | | inss1 3833 |
. . . . . 6
⊢ (𝑋 ∩ ∩ 𝑡)
⊆ 𝑋 |
| 4 | | elpw2g 4827 |
. . . . . 6
⊢ (𝑋 ∈ 𝑉 → ((𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 ∩ ∩ 𝑡) ⊆ 𝑋)) |
| 5 | 3, 4 | mpbiri 248 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋) |
| 6 | 5 | ad2antrr 762 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 ∩ ∩ 𝑡) ∈ 𝒫 𝑋) |
| 7 | | imassrn 5477 |
. . . . . . . . 9
⊢ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ran 𝐹 |
| 8 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋) |
| 9 | 8 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋) |
| 10 | 7, 9 | syl5ss 3614 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ 𝒫
𝑋) |
| 11 | 10 | unissd 4462 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ∪ 𝒫 𝑋) |
| 12 | | unipw 4918 |
. . . . . . 7
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 13 | 11, 12 | syl6sseq 3651 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑋) |
| 14 | 13 | adantr 481 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ 𝑋) |
| 15 | | inss2 3834 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ ∩ 𝑡)
⊆ ∩ 𝑡 |
| 16 | | intss1 4492 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝑡 → ∩ 𝑡 ⊆ 𝑎) |
| 17 | 15, 16 | syl5ss 3614 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑡 → (𝑋 ∩ ∩ 𝑡) ⊆ 𝑎) |
| 18 | 17 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝑋 ∩ ∩ 𝑡) ⊆ 𝑎) |
| 19 | | sspwb 4917 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∩ ∩ 𝑡)
⊆ 𝑎 ↔ 𝒫
(𝑋 ∩ ∩ 𝑡)
⊆ 𝒫 𝑎) |
| 20 | 18, 19 | sylib 208 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → 𝒫 (𝑋 ∩ ∩ 𝑡) ⊆ 𝒫 𝑎) |
| 21 | | ssrin 3838 |
. . . . . . . . . . 11
⊢
(𝒫 (𝑋 ∩
∩ 𝑡) ⊆ 𝒫 𝑎 → (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin) ⊆ (𝒫
𝑎 ∩
Fin)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin) ⊆ (𝒫
𝑎 ∩
Fin)) |
| 23 | | imass2 5501 |
. . . . . . . . . 10
⊢
((𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ (𝐹
“ (𝒫 𝑎 ∩
Fin))) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
| 25 | 24 | unissd 4462 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
| 26 | | ssel2 3598 |
. . . . . . . . . 10
⊢ ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎 ∈ 𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) |
| 27 | | pweq 4161 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎) |
| 28 | 27 | ineq1d 3813 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin)) |
| 29 | 28 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin))) |
| 30 | 29 | unieqd 4446 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑎 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin))) |
| 31 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑎 → 𝑠 = 𝑎) |
| 32 | 30, 31 | sseq12d 3634 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑎 → (∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 ↔ ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin)) ⊆ 𝑎)) |
| 33 | 32 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)) |
| 34 | 33 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → ∪ (𝐹
“ (𝒫 𝑎 ∩
Fin)) ⊆ 𝑎) |
| 35 | 26, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎) |
| 36 | 35 | adantll 750 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎) |
| 37 | 25, 36 | sstrd 3613 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎 ∈ 𝑡) → ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑎) |
| 38 | 37 | ralrimiva 2966 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎 ∈ 𝑡 ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) ⊆ 𝑎) |
| 39 | | ssint 4493 |
. . . . . 6
⊢ (∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ ∩ 𝑡
↔ ∀𝑎 ∈
𝑡 ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ 𝑎) |
| 40 | 38, 39 | sylibr 224 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ ∩ 𝑡) |
| 41 | 14, 40 | ssind 3837 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∪ (𝐹
“ (𝒫 (𝑋 ∩
∩ 𝑡) ∩ Fin)) ⊆ (𝑋 ∩ ∩ 𝑡)) |
| 42 | | pweq 4161 |
. . . . . . . . 9
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 ∩ ∩ 𝑡)) |
| 43 | 42 | ineq1d 3813 |
. . . . . . . 8
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 ∩ ∩ 𝑡)
∩ Fin)) |
| 44 | 43 | imaeq2d 5466 |
. . . . . . 7
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin))) |
| 45 | 44 | unieqd 4446 |
. . . . . 6
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) = ∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin))) |
| 46 | | id 22 |
. . . . . 6
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → 𝑠 = (𝑋 ∩ ∩ 𝑡)) |
| 47 | 45, 46 | sseq12d 3634 |
. . . . 5
⊢ (𝑠 = (𝑋 ∩ ∩ 𝑡) → (∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠 ↔
∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ (𝑋 ∩ ∩ 𝑡))) |
| 48 | 47 | elrab 3363 |
. . . 4
⊢ ((𝑋 ∩ ∩ 𝑡)
∈ {𝑠 ∈ 𝒫
𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ↔
((𝑋 ∩ ∩ 𝑡)
∈ 𝒫 𝑋 ∧
∪ (𝐹 “ (𝒫 (𝑋 ∩ ∩ 𝑡) ∩ Fin)) ⊆ (𝑋 ∩ ∩ 𝑡))) |
| 49 | 6, 41, 48 | sylanbrc 698 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 ∩ ∩ 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) |
| 50 | 2, 49 | ismred2 16263 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋)) |
| 51 | | fssxp 6060 |
. . . 4
⊢ (𝐹:𝒫 𝑋⟶𝒫 𝑋 → 𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋)) |
| 52 | | pwexg 4850 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ V) |
| 53 | | xpexg 6960 |
. . . . 5
⊢
((𝒫 𝑋 ∈
V ∧ 𝒫 𝑋 ∈
V) → (𝒫 𝑋
× 𝒫 𝑋) ∈
V) |
| 54 | 52, 52, 53 | syl2anc 693 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V) |
| 55 | | ssexg 4804 |
. . . 4
⊢ ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V) |
| 56 | 51, 54, 55 | syl2anr 495 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V) |
| 57 | | simpr 477 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋) |
| 58 | | pweq 4161 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡) |
| 59 | 58 | ineq1d 3813 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin)) |
| 60 | 59 | imaeq2d 5466 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin))) |
| 61 | 60 | unieqd 4446 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin))) |
| 62 | | id 22 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝑠 = 𝑡) |
| 63 | 61, 62 | sseq12d 3634 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
| 64 | 63 | elrab3 3364 |
. . . . 5
⊢ (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
| 65 | 64 | rgen 2922 |
. . . 4
⊢
∀𝑡 ∈
𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) |
| 66 | 57, 65 | jctir 561 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
| 67 | | feq1 6026 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋 ↔ 𝐹:𝒫 𝑋⟶𝒫 𝑋)) |
| 68 | | imaeq1 5461 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin))) |
| 69 | 68 | unieqd 4446 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) = ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin))) |
| 70 | 69 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (∪ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) |
| 71 | 70 | bibi2d 332 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) ↔
(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ↔
∪ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))) |
| 72 | 71 | ralbidv 2986 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡) ↔
∀𝑡 ∈ 𝒫
𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
| 73 | 67, 72 | anbi12d 747 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) ↔
(𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)))) |
| 74 | 73 | spcegv 3294 |
. . 3
⊢ (𝐹 ∈ V → ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝐹
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)) →
∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)))) |
| 75 | 56, 66, 74 | sylc 65 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡))) |
| 76 | | isacs 16312 |
. 2
⊢ ({𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ∈
(ACS‘𝑋) ↔
({𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹
“ (𝒫 𝑠 ∩
Fin)) ⊆ 𝑠} ∈
(Moore‘𝑋) ∧
∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ∪ (𝑓
“ (𝒫 𝑡 ∩
Fin)) ⊆ 𝑡)))) |
| 77 | 50, 75, 76 | sylanbrc 698 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 ∣ ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋)) |