MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   Unicode version

Theorem isacs1i 16318
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (ACS `  X )
)
Distinct variable groups:    F, s    X, s
Allowed substitution hint:    V( s)

Proof of Theorem isacs1i
Dummy variables  a 
t  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3687 . . . 4  |-  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  C_ 
~P X
21a1i 11 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  C_ 
~P X )
3 inss1 3833 . . . . . 6  |-  ( X  i^i  |^| t )  C_  X
4 elpw2g 4827 . . . . . 6  |-  ( X  e.  V  ->  (
( X  i^i  |^| t )  e.  ~P X 
<->  ( X  i^i  |^| t )  C_  X
) )
53, 4mpbiri 248 . . . . 5  |-  ( X  e.  V  ->  ( X  i^i  |^| t )  e. 
~P X )
65ad2antrr 762 . . . 4  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  ( X  i^i  |^| t )  e. 
~P X )
7 imassrn 5477 . . . . . . . . 9  |-  ( F
" ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ran  F
8 frn 6053 . . . . . . . . . 10  |-  ( F : ~P X --> ~P X  ->  ran  F  C_  ~P X )
98adantl 482 . . . . . . . . 9  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ran  F  C_  ~P X )
107, 9syl5ss 3614 . . . . . . . 8  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ~P X )
1110unissd 4462 . . . . . . 7  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  U. ~P X )
12 unipw 4918 . . . . . . 7  |-  U. ~P X  =  X
1311, 12syl6sseq 3651 . . . . . 6  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  X )
1413adantr 481 . . . . 5  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  X )
15 inss2 3834 . . . . . . . . . . . . . 14  |-  ( X  i^i  |^| t )  C_  |^| t
16 intss1 4492 . . . . . . . . . . . . . 14  |-  ( a  e.  t  ->  |^| t  C_  a )
1715, 16syl5ss 3614 . . . . . . . . . . . . 13  |-  ( a  e.  t  ->  ( X  i^i  |^| t )  C_  a )
1817adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( X  i^i  |^| t )  C_  a )
19 sspwb 4917 . . . . . . . . . . . 12  |-  ( ( X  i^i  |^| t
)  C_  a  <->  ~P ( X  i^i  |^| t )  C_  ~P a )
2018, 19sylib 208 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ~P ( X  i^i  |^| t
)  C_  ~P a
)
21 ssrin 3838 . . . . . . . . . . 11  |-  ( ~P ( X  i^i  |^| t )  C_  ~P a  ->  ( ~P ( X  i^i  |^| t )  i^i 
Fin )  C_  ( ~P a  i^i  Fin )
)
2220, 21syl 17 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( ~P ( X  i^i  |^| t )  i^i  Fin )  C_  ( ~P a  i^i  Fin ) )
23 imass2 5501 . . . . . . . . . 10  |-  ( ( ~P ( X  i^i  |^| t )  i^i  Fin )  C_  ( ~P a  i^i  Fin )  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( F " ( ~P a  i^i  Fin )
) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( F " ( ~P a  i^i  Fin )
) )
2524unissd 4462 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  U. ( F " ( ~P a  i^i  Fin )
) )
26 ssel2 3598 . . . . . . . . . 10  |-  ( ( t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  /\  a  e.  t
)  ->  a  e.  { s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s } )
27 pweq 4161 . . . . . . . . . . . . . . . 16  |-  ( s  =  a  ->  ~P s  =  ~P a
)
2827ineq1d 3813 . . . . . . . . . . . . . . 15  |-  ( s  =  a  ->  ( ~P s  i^i  Fin )  =  ( ~P a  i^i  Fin ) )
2928imaeq2d 5466 . . . . . . . . . . . . . 14  |-  ( s  =  a  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P a  i^i  Fin )
) )
3029unieqd 4446 . . . . . . . . . . . . 13  |-  ( s  =  a  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P a  i^i 
Fin ) ) )
31 id 22 . . . . . . . . . . . . 13  |-  ( s  =  a  ->  s  =  a )
3230, 31sseq12d 3634 . . . . . . . . . . . 12  |-  ( s  =  a  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a ) )
3332elrab 3363 . . . . . . . . . . 11  |-  ( a  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  ( a  e.  ~P X  /\  U. ( F "
( ~P a  i^i 
Fin ) )  C_  a ) )
3433simprbi 480 . . . . . . . . . 10  |-  ( a  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  ->  U. ( F "
( ~P a  i^i 
Fin ) )  C_  a )
3526, 34syl 17 . . . . . . . . 9  |-  ( ( t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  /\  a  e.  t
)  ->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a )
3635adantll 750 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a )
3725, 36sstrd 3613 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  a )
3837ralrimiva 2966 . . . . . 6  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  A. a  e.  t  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  a )
39 ssint 4493 . . . . . 6  |-  ( U. ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) )  C_  |^| t  <->  A. a  e.  t  U. ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) )  C_  a
)
4038, 39sylibr 224 . . . . 5  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  |^| t )
4114, 40ssind 3837 . . . 4  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) )
42 pweq 4161 . . . . . . . . 9  |-  ( s  =  ( X  i^i  |^| t )  ->  ~P s  =  ~P ( X  i^i  |^| t ) )
4342ineq1d 3813 . . . . . . . 8  |-  ( s  =  ( X  i^i  |^| t )  ->  ( ~P s  i^i  Fin )  =  ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )
4443imaeq2d 5466 . . . . . . 7  |-  ( s  =  ( X  i^i  |^| t )  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) ) )
4544unieqd 4446 . . . . . 6  |-  ( s  =  ( X  i^i  |^| t )  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P ( X  i^i  |^| t )  i^i 
Fin ) ) )
46 id 22 . . . . . 6  |-  ( s  =  ( X  i^i  |^| t )  ->  s  =  ( X  i^i  |^| t ) )
4745, 46sseq12d 3634 . . . . 5  |-  ( s  =  ( X  i^i  |^| t )  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) ) )
4847elrab 3363 . . . 4  |-  ( ( X  i^i  |^| t
)  e.  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  ( ( X  i^i  |^| t )  e.  ~P X  /\  U. ( F
" ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) ) )
496, 41, 48sylanbrc 698 . . 3  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  ( X  i^i  |^| t )  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )
502, 49ismred2 16263 . 2  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (Moore `  X )
)
51 fssxp 6060 . . . 4  |-  ( F : ~P X --> ~P X  ->  F  C_  ( ~P X  X.  ~P X ) )
52 pwexg 4850 . . . . 5  |-  ( X  e.  V  ->  ~P X  e.  _V )
53 xpexg 6960 . . . . 5  |-  ( ( ~P X  e.  _V  /\ 
~P X  e.  _V )  ->  ( ~P X  X.  ~P X )  e. 
_V )
5452, 52, 53syl2anc 693 . . . 4  |-  ( X  e.  V  ->  ( ~P X  X.  ~P X
)  e.  _V )
55 ssexg 4804 . . . 4  |-  ( ( F  C_  ( ~P X  X.  ~P X )  /\  ( ~P X  X.  ~P X )  e. 
_V )  ->  F  e.  _V )
5651, 54, 55syl2anr 495 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  F  e.  _V )
57 simpr 477 . . . 4  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  F : ~P X --> ~P X )
58 pweq 4161 . . . . . . . . . 10  |-  ( s  =  t  ->  ~P s  =  ~P t
)
5958ineq1d 3813 . . . . . . . . 9  |-  ( s  =  t  ->  ( ~P s  i^i  Fin )  =  ( ~P t  i^i  Fin ) )
6059imaeq2d 5466 . . . . . . . 8  |-  ( s  =  t  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P t  i^i  Fin )
) )
6160unieqd 4446 . . . . . . 7  |-  ( s  =  t  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P t  i^i 
Fin ) ) )
62 id 22 . . . . . . 7  |-  ( s  =  t  ->  s  =  t )
6361, 62sseq12d 3634 . . . . . 6  |-  ( s  =  t  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P t  i^i  Fin ) )  C_  t ) )
6463elrab3 3364 . . . . 5  |-  ( t  e.  ~P X  -> 
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) )
6564rgen 2922 . . . 4  |-  A. t  e.  ~P  X ( t  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  U. ( F " ( ~P t  i^i  Fin )
)  C_  t )
6657, 65jctir 561 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ( F : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
67 feq1 6026 . . . . 5  |-  ( f  =  F  ->  (
f : ~P X --> ~P X  <->  F : ~P X --> ~P X ) )
68 imaeq1 5461 . . . . . . . . 9  |-  ( f  =  F  ->  (
f " ( ~P t  i^i  Fin )
)  =  ( F
" ( ~P t  i^i  Fin ) ) )
6968unieqd 4446 . . . . . . . 8  |-  ( f  =  F  ->  U. (
f " ( ~P t  i^i  Fin )
)  =  U. ( F " ( ~P t  i^i  Fin ) ) )
7069sseq1d 3632 . . . . . . 7  |-  ( f  =  F  ->  ( U. ( f " ( ~P t  i^i  Fin )
)  C_  t  <->  U. ( F " ( ~P t  i^i  Fin ) )  C_  t ) )
7170bibi2d 332 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t )  <->  ( t  e.  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
7271ralbidv 2986 . . . . 5  |-  ( f  =  F  ->  ( A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t )  <->  A. t  e.  ~P  X ( t  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  U. ( F " ( ~P t  i^i  Fin )
)  C_  t )
) )
7367, 72anbi12d 747 . . . 4  |-  ( f  =  F  ->  (
( f : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) )  <->  ( F : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7473spcegv 3294 . . 3  |-  ( F  e.  _V  ->  (
( F : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) )  ->  E. f ( f : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7556, 66, 74sylc 65 . 2  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  E. f
( f : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
76 isacs 16312 . 2  |-  ( { s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  e.  (ACS `  X )  <->  ( {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7750, 75, 76sylanbrc 698 1  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (ACS `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475    X. cxp 5112   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888   Fincfn 7955  Moorecmre 16242  ACScacs 16245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-acs 16249
This theorem is referenced by:  acsfn  16320
  Copyright terms: Public domain W3C validator