| Step | Hyp | Ref
| Expression |
| 1 | | trgcgrg.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | trgcgrg.m |
. . 3
⊢ − =
(dist‘𝐺) |
| 3 | | trgcgrg.r |
. . 3
⊢ ∼ =
(cgrG‘𝐺) |
| 4 | | trgcgrg.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | | iscgrglt.d |
. . 3
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 6 | | iscgrglt.a |
. . 3
⊢ (𝜑 → 𝐴:𝐷⟶𝑃) |
| 7 | | iscgrglt.b |
. . 3
⊢ (𝜑 → 𝐵:𝐷⟶𝑃) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | iscgrgd 25408 |
. 2
⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 9 | | simp2 1062 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) ∧ ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ∧ 𝑖 < 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 10 | 9 | 3expia 1267 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) ∧ ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 11 | 10 | ex 450 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) → (((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 12 | 11 | ralimdvva 2964 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 13 | | breq1 4656 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝑘 < 𝑙 ↔ 𝑖 < 𝑙)) |
| 14 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) |
| 15 | 14 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐴‘𝑖) − (𝐴‘𝑙))) |
| 16 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝐵‘𝑘) = (𝐵‘𝑖)) |
| 17 | 16 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ((𝐵‘𝑘) − (𝐵‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))) |
| 18 | 15, 17 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙)))) |
| 19 | 13, 18 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ (𝑖 < 𝑙 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))))) |
| 20 | | breq2 4657 |
. . . . . 6
⊢ (𝑙 = 𝑗 → (𝑖 < 𝑙 ↔ 𝑖 < 𝑗)) |
| 21 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐴‘𝑙) = (𝐴‘𝑗)) |
| 22 | 21 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐴‘𝑖) − (𝐴‘𝑗))) |
| 23 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐵‘𝑙) = (𝐵‘𝑗)) |
| 24 | 23 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → ((𝐵‘𝑖) − (𝐵‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 25 | 22, 24 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑙 = 𝑗 → (((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 26 | 20, 25 | imbi12d 334 |
. . . . 5
⊢ (𝑙 = 𝑗 → ((𝑖 < 𝑙 → ((𝐴‘𝑖) − (𝐴‘𝑙)) = ((𝐵‘𝑖) − (𝐵‘𝑙))) ↔ (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 27 | 19, 26 | cbvral2v 3179 |
. . . 4
⊢
(∀𝑘 ∈
dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 28 | | simpllr 799 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 ∈ dom 𝐴) |
| 29 | | simplr 792 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑗 ∈ dom 𝐴) |
| 30 | | simp-4r 807 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) |
| 31 | 28, 29, 30 | jca31 557 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))))) |
| 32 | | simpr 477 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
| 33 | 19, 26 | rspc2v 3322 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) → (∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 34 | 33 | imp 445 |
. . . . . . . . . 10
⊢ (((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → (𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 35 | 34 | imp 445 |
. . . . . . . . 9
⊢ ((((𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 < 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 36 | 31, 32, 35 | syl2anc 693 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 37 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Itv‘𝐺) =
(Itv‘𝐺) |
| 38 | 4 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝐺 ∈ TarskiG) |
| 39 | 6 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐴:𝐷⟶𝑃) |
| 40 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴) |
| 41 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝐴:𝐷⟶𝑃 → dom 𝐴 = 𝐷) |
| 42 | 39, 41 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 = 𝐷) |
| 43 | 40, 42 | eleqtrd 2703 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ 𝐷) |
| 44 | 39, 43 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴‘𝑖) ∈ 𝑃) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴‘𝑖) ∈ 𝑃) |
| 46 | 7 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐵:𝐷⟶𝑃) |
| 47 | 46, 43 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵‘𝑖) ∈ 𝑃) |
| 48 | 47 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵‘𝑖) ∈ 𝑃) |
| 49 | 1, 2, 37, 38, 45, 48 | tgcgrtriv 25379 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑖)) = ((𝐵‘𝑖) − (𝐵‘𝑖))) |
| 50 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗) |
| 51 | 50 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴‘𝑖) = (𝐴‘𝑗)) |
| 52 | 51 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑖)) = ((𝐴‘𝑖) − (𝐴‘𝑗))) |
| 53 | 50 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵‘𝑖) = (𝐵‘𝑗)) |
| 54 | 53 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐵‘𝑖) − (𝐵‘𝑖)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 55 | 49, 52, 54 | 3eqtr3d 2664 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 56 | 55 | adantl3r 786 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 57 | 4 | ad4antr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝐺 ∈ TarskiG) |
| 58 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴) |
| 59 | 58, 42 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ 𝐷) |
| 60 | 39, 59 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴‘𝑗) ∈ 𝑃) |
| 61 | 60 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑗) ∈ 𝑃) |
| 62 | 61 | adantl3r 786 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑗) ∈ 𝑃) |
| 63 | 44 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑖) ∈ 𝑃) |
| 64 | 63 | adantl3r 786 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴‘𝑖) ∈ 𝑃) |
| 65 | 46, 59 | ffvelrnd 6360 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵‘𝑗) ∈ 𝑃) |
| 66 | 65 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑗) ∈ 𝑃) |
| 67 | 66 | adantl3r 786 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑗) ∈ 𝑃) |
| 68 | 47 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑖) ∈ 𝑃) |
| 69 | 68 | adantl3r 786 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵‘𝑖) ∈ 𝑃) |
| 70 | | simplr 792 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 ∈ dom 𝐴) |
| 71 | | simpllr 799 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑖 ∈ dom 𝐴) |
| 72 | | simp-4r 807 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) |
| 73 | 70, 71, 72 | jca31 557 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))))) |
| 74 | | simpr 477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
| 75 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (𝑘 < 𝑙 ↔ 𝑗 < 𝑙)) |
| 76 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
| 77 | 76 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐴‘𝑗) − (𝐴‘𝑙))) |
| 78 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
| 79 | 78 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝐵‘𝑘) − (𝐵‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))) |
| 80 | 77, 79 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙)))) |
| 81 | 75, 80 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) ↔ (𝑗 < 𝑙 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))))) |
| 82 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑖 → (𝑗 < 𝑙 ↔ 𝑗 < 𝑖)) |
| 83 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑖 → (𝐴‘𝑙) = (𝐴‘𝑖)) |
| 84 | 83 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐴‘𝑗) − (𝐴‘𝑖))) |
| 85 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑖 → (𝐵‘𝑙) = (𝐵‘𝑖)) |
| 86 | 85 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑖 → ((𝐵‘𝑗) − (𝐵‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑖))) |
| 87 | 84, 86 | eqeq12d 2637 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑖 → (((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙)) ↔ ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖)))) |
| 88 | 82, 87 | imbi12d 334 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑖 → ((𝑗 < 𝑙 → ((𝐴‘𝑗) − (𝐴‘𝑙)) = ((𝐵‘𝑗) − (𝐵‘𝑙))) ↔ (𝑗 < 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))))) |
| 89 | 81, 88 | rspc2v 3322 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) → (∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) → (𝑗 < 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))))) |
| 90 | 89 | imp 445 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → (𝑗 < 𝑖 → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖)))) |
| 91 | 90 | imp 445 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ dom 𝐴 ∧ 𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑗 < 𝑖) → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))) |
| 92 | 73, 74, 91 | syl2anc 693 |
. . . . . . . . 9
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴‘𝑗) − (𝐴‘𝑖)) = ((𝐵‘𝑗) − (𝐵‘𝑖))) |
| 93 | 1, 2, 37, 57, 62, 64, 67, 69, 92 | tgcgrcomlr 25375 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 94 | 6, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐴 = 𝐷) |
| 95 | 94, 5 | eqsstrd 3639 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐴 ⊆ ℝ) |
| 96 | 95 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 ⊆ ℝ) |
| 97 | 40 | adantllr 755 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴) |
| 98 | 96, 97 | sseldd 3604 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ ℝ) |
| 99 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴) |
| 100 | 96, 99 | sseldd 3604 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ ℝ) |
| 101 | 98, 100 | lttri4d 10178 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝑖 < 𝑗 ∨ 𝑖 = 𝑗 ∨ 𝑗 < 𝑖)) |
| 102 | 36, 56, 93, 101 | mpjao3dan 1395 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 103 | 102 | anasss 679 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) ∧ (𝑖 ∈ dom 𝐴 ∧ 𝑗 ∈ dom 𝐴)) → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 104 | 103 | ralrimivva 2971 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙)))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) |
| 105 | 104 | ex 450 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ dom 𝐴∀𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴‘𝑘) − (𝐴‘𝑙)) = ((𝐵‘𝑘) − (𝐵‘𝑙))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 106 | 27, 105 | syl5bir 233 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))) → ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)))) |
| 107 | 12, 106 | impbid 202 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗)) ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |
| 108 | 8, 107 | bitrd 268 |
1
⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ ∀𝑖 ∈ dom 𝐴∀𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴‘𝑖) − (𝐴‘𝑗)) = ((𝐵‘𝑖) − (𝐵‘𝑗))))) |