MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrglt Structured version   Visualization version   GIF version

Theorem iscgrglt 25409
Description: The property for two sequences 𝐴 and 𝐵 of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020.)
Hypotheses
Ref Expression
trgcgrg.p 𝑃 = (Base‘𝐺)
trgcgrg.m = (dist‘𝐺)
trgcgrg.r = (cgrG‘𝐺)
trgcgrg.g (𝜑𝐺 ∈ TarskiG)
iscgrglt.d (𝜑𝐷 ⊆ ℝ)
iscgrglt.a (𝜑𝐴:𝐷𝑃)
iscgrglt.b (𝜑𝐵:𝐷𝑃)
Assertion
Ref Expression
iscgrglt (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
Distinct variable groups:   ,𝑖,𝑗   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝑖,𝐺,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑃(𝑖,𝑗)   (𝑖,𝑗)

Proof of Theorem iscgrglt
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcgrg.p . . 3 𝑃 = (Base‘𝐺)
2 trgcgrg.m . . 3 = (dist‘𝐺)
3 trgcgrg.r . . 3 = (cgrG‘𝐺)
4 trgcgrg.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 iscgrglt.d . . 3 (𝜑𝐷 ⊆ ℝ)
6 iscgrglt.a . . 3 (𝜑𝐴:𝐷𝑃)
7 iscgrglt.b . . 3 (𝜑𝐵:𝐷𝑃)
81, 2, 3, 4, 5, 6, 7iscgrgd 25408 . 2 (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
9 simp2 1062 . . . . . 6 (((𝜑 ∧ (𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴)) ∧ ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) ∧ 𝑖 < 𝑗) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
1093expia 1267 . . . . 5 (((𝜑 ∧ (𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴)) ∧ ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))) → (𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
1110ex 450 . . . 4 ((𝜑 ∧ (𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴)) → (((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) → (𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
1211ralimdvva 2964 . . 3 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) → ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
13 breq1 4656 . . . . . 6 (𝑘 = 𝑖 → (𝑘 < 𝑙𝑖 < 𝑙))
14 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑖 → (𝐴𝑘) = (𝐴𝑖))
1514oveq1d 6665 . . . . . . 7 (𝑘 = 𝑖 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐴𝑖) (𝐴𝑙)))
16 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
1716oveq1d 6665 . . . . . . 7 (𝑘 = 𝑖 → ((𝐵𝑘) (𝐵𝑙)) = ((𝐵𝑖) (𝐵𝑙)))
1815, 17eqeq12d 2637 . . . . . 6 (𝑘 = 𝑖 → (((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)) ↔ ((𝐴𝑖) (𝐴𝑙)) = ((𝐵𝑖) (𝐵𝑙))))
1913, 18imbi12d 334 . . . . 5 (𝑘 = 𝑖 → ((𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) ↔ (𝑖 < 𝑙 → ((𝐴𝑖) (𝐴𝑙)) = ((𝐵𝑖) (𝐵𝑙)))))
20 breq2 4657 . . . . . 6 (𝑙 = 𝑗 → (𝑖 < 𝑙𝑖 < 𝑗))
21 fveq2 6191 . . . . . . . 8 (𝑙 = 𝑗 → (𝐴𝑙) = (𝐴𝑗))
2221oveq2d 6666 . . . . . . 7 (𝑙 = 𝑗 → ((𝐴𝑖) (𝐴𝑙)) = ((𝐴𝑖) (𝐴𝑗)))
23 fveq2 6191 . . . . . . . 8 (𝑙 = 𝑗 → (𝐵𝑙) = (𝐵𝑗))
2423oveq2d 6666 . . . . . . 7 (𝑙 = 𝑗 → ((𝐵𝑖) (𝐵𝑙)) = ((𝐵𝑖) (𝐵𝑗)))
2522, 24eqeq12d 2637 . . . . . 6 (𝑙 = 𝑗 → (((𝐴𝑖) (𝐴𝑙)) = ((𝐵𝑖) (𝐵𝑙)) ↔ ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
2620, 25imbi12d 334 . . . . 5 (𝑙 = 𝑗 → ((𝑖 < 𝑙 → ((𝐴𝑖) (𝐴𝑙)) = ((𝐵𝑖) (𝐵𝑙))) ↔ (𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
2719, 26cbvral2v 3179 . . . 4 (∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
28 simpllr 799 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 ∈ dom 𝐴)
29 simplr 792 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑗 ∈ dom 𝐴)
30 simp-4r 807 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))))
3128, 29, 30jca31 557 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))))
32 simpr 477 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
3319, 26rspc2v 3322 . . . . . . . . . . 11 ((𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴) → (∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) → (𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
3433imp 445 . . . . . . . . . 10 (((𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) → (𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
3534imp 445 . . . . . . . . 9 ((((𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 < 𝑗) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
3631, 32, 35syl2anc 693 . . . . . . . 8 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 < 𝑗) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
37 eqid 2622 . . . . . . . . . . 11 (Itv‘𝐺) = (Itv‘𝐺)
384ad3antrrr 766 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝐺 ∈ TarskiG)
396ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐴:𝐷𝑃)
40 simplr 792 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴)
41 fdm 6051 . . . . . . . . . . . . . . 15 (𝐴:𝐷𝑃 → dom 𝐴 = 𝐷)
4239, 41syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 = 𝐷)
4340, 42eleqtrd 2703 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖𝐷)
4439, 43ffvelrnd 6360 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴𝑖) ∈ 𝑃)
4544adantr 481 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴𝑖) ∈ 𝑃)
467ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝐵:𝐷𝑃)
4746, 43ffvelrnd 6360 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵𝑖) ∈ 𝑃)
4847adantr 481 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵𝑖) ∈ 𝑃)
491, 2, 37, 38, 45, 48tgcgrtriv 25379 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴𝑖) (𝐴𝑖)) = ((𝐵𝑖) (𝐵𝑖)))
50 simpr 477 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → 𝑖 = 𝑗)
5150fveq2d 6195 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐴𝑖) = (𝐴𝑗))
5251oveq2d 6666 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴𝑖) (𝐴𝑖)) = ((𝐴𝑖) (𝐴𝑗)))
5350fveq2d 6195 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → (𝐵𝑖) = (𝐵𝑗))
5453oveq2d 6666 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐵𝑖) (𝐵𝑖)) = ((𝐵𝑖) (𝐵𝑗)))
5549, 52, 543eqtr3d 2664 . . . . . . . . 9 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
5655adantl3r 786 . . . . . . . 8 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑖 = 𝑗) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
574ad4antr 768 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝐺 ∈ TarskiG)
58 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴)
5958, 42eleqtrd 2703 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗𝐷)
6039, 59ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐴𝑗) ∈ 𝑃)
6160adantr 481 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴𝑗) ∈ 𝑃)
6261adantl3r 786 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴𝑗) ∈ 𝑃)
6344adantr 481 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴𝑖) ∈ 𝑃)
6463adantl3r 786 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐴𝑖) ∈ 𝑃)
6546, 59ffvelrnd 6360 . . . . . . . . . . 11 (((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝐵𝑗) ∈ 𝑃)
6665adantr 481 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵𝑗) ∈ 𝑃)
6766adantl3r 786 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵𝑗) ∈ 𝑃)
6847adantr 481 . . . . . . . . . 10 ((((𝜑𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵𝑖) ∈ 𝑃)
6968adantl3r 786 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → (𝐵𝑖) ∈ 𝑃)
70 simplr 792 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 ∈ dom 𝐴)
71 simpllr 799 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑖 ∈ dom 𝐴)
72 simp-4r 807 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))))
7370, 71, 72jca31 557 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))))
74 simpr 477 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
75 breq1 4656 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (𝑘 < 𝑙𝑗 < 𝑙))
76 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
7776oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐴𝑗) (𝐴𝑙)))
78 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
7978oveq1d 6665 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → ((𝐵𝑘) (𝐵𝑙)) = ((𝐵𝑗) (𝐵𝑙)))
8077, 79eqeq12d 2637 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)) ↔ ((𝐴𝑗) (𝐴𝑙)) = ((𝐵𝑗) (𝐵𝑙))))
8175, 80imbi12d 334 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) ↔ (𝑗 < 𝑙 → ((𝐴𝑗) (𝐴𝑙)) = ((𝐵𝑗) (𝐵𝑙)))))
82 breq2 4657 . . . . . . . . . . . . . 14 (𝑙 = 𝑖 → (𝑗 < 𝑙𝑗 < 𝑖))
83 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑖 → (𝐴𝑙) = (𝐴𝑖))
8483oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑙 = 𝑖 → ((𝐴𝑗) (𝐴𝑙)) = ((𝐴𝑗) (𝐴𝑖)))
85 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑖 → (𝐵𝑙) = (𝐵𝑖))
8685oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑙 = 𝑖 → ((𝐵𝑗) (𝐵𝑙)) = ((𝐵𝑗) (𝐵𝑖)))
8784, 86eqeq12d 2637 . . . . . . . . . . . . . 14 (𝑙 = 𝑖 → (((𝐴𝑗) (𝐴𝑙)) = ((𝐵𝑗) (𝐵𝑙)) ↔ ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖))))
8882, 87imbi12d 334 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → ((𝑗 < 𝑙 → ((𝐴𝑗) (𝐴𝑙)) = ((𝐵𝑗) (𝐵𝑙))) ↔ (𝑗 < 𝑖 → ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖)))))
8981, 88rspc2v 3322 . . . . . . . . . . . 12 ((𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴) → (∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) → (𝑗 < 𝑖 → ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖)))))
9089imp 445 . . . . . . . . . . 11 (((𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) → (𝑗 < 𝑖 → ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖))))
9190imp 445 . . . . . . . . . 10 ((((𝑗 ∈ dom 𝐴𝑖 ∈ dom 𝐴) ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑗 < 𝑖) → ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖)))
9273, 74, 91syl2anc 693 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴𝑗) (𝐴𝑖)) = ((𝐵𝑗) (𝐵𝑖)))
931, 2, 37, 57, 62, 64, 67, 69, 92tgcgrcomlr 25375 . . . . . . . 8 (((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) ∧ 𝑗 < 𝑖) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
946, 41syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = 𝐷)
9594, 5eqsstrd 3639 . . . . . . . . . . 11 (𝜑 → dom 𝐴 ⊆ ℝ)
9695ad3antrrr 766 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → dom 𝐴 ⊆ ℝ)
9740adantllr 755 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ dom 𝐴)
9896, 97sseldd 3604 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑖 ∈ ℝ)
99 simpr 477 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ dom 𝐴)
10096, 99sseldd 3604 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → 𝑗 ∈ ℝ)
10198, 100lttri4d 10178 . . . . . . . 8 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → (𝑖 < 𝑗𝑖 = 𝑗𝑗 < 𝑖))
10236, 56, 93, 101mpjao3dan 1395 . . . . . . 7 ((((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ 𝑖 ∈ dom 𝐴) ∧ 𝑗 ∈ dom 𝐴) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
103102anasss 679 . . . . . 6 (((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) ∧ (𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴)) → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
104103ralrimivva 2971 . . . . 5 ((𝜑 ∧ ∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙)))) → ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))
105104ex 450 . . . 4 (𝜑 → (∀𝑘 ∈ dom 𝐴𝑙 ∈ dom 𝐴(𝑘 < 𝑙 → ((𝐴𝑘) (𝐴𝑙)) = ((𝐵𝑘) (𝐵𝑙))) → ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
10627, 105syl5bir 233 . . 3 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))) → ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
10712, 106impbid 202 . 2 (𝜑 → (∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)) ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
1088, 107bitrd 268 1 (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cr 9935   < clt 10074  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-trkgc 25347  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  tgcgr4  25426
  Copyright terms: Public domain W3C validator