MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Structured version   Visualization version   GIF version

Theorem isgim 17704
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b 𝐵 = (Base‘𝑅)
isgim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
isgim (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))

Proof of Theorem isgim
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1039 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
2 df-gim 17701 . . 3 GrpIso = (𝑎 ∈ Grp, 𝑏 ∈ Grp ↦ {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)})
3 ovex 6678 . . . 4 (𝑎 GrpHom 𝑏) ∈ V
43rabex 4813 . . 3 {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} ∈ V
5 oveq12 6659 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑎 GrpHom 𝑏) = (𝑅 GrpHom 𝑆))
6 fveq2 6191 . . . . . 6 (𝑎 = 𝑅 → (Base‘𝑎) = (Base‘𝑅))
7 isgim.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7syl6eqr 2674 . . . . 5 (𝑎 = 𝑅 → (Base‘𝑎) = 𝐵)
9 fveq2 6191 . . . . . 6 (𝑏 = 𝑆 → (Base‘𝑏) = (Base‘𝑆))
10 isgim.c . . . . . 6 𝐶 = (Base‘𝑆)
119, 10syl6eqr 2674 . . . . 5 (𝑏 = 𝑆 → (Base‘𝑏) = 𝐶)
12 f1oeq23 6130 . . . . 5 (((Base‘𝑎) = 𝐵 ∧ (Base‘𝑏) = 𝐶) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
138, 11, 12syl2an 494 . . . 4 ((𝑎 = 𝑅𝑏 = 𝑆) → (𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏) ↔ 𝑐:𝐵1-1-onto𝐶))
145, 13rabeqbidv 3195 . . 3 ((𝑎 = 𝑅𝑏 = 𝑆) → {𝑐 ∈ (𝑎 GrpHom 𝑏) ∣ 𝑐:(Base‘𝑎)–1-1-onto→(Base‘𝑏)} = {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶})
152, 4, 14elovmpt2 6879 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
16 ghmgrp1 17662 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
17 ghmgrp2 17663 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
1816, 17jca 554 . . . . 5 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
1918adantr 481 . . . 4 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
2019pm4.71ri 665 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
21 f1oeq1 6127 . . . . 5 (𝑐 = 𝐹 → (𝑐:𝐵1-1-onto𝐶𝐹:𝐵1-1-onto𝐶))
2221elrab 3363 . . . 4 (𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
2322anbi2i 730 . . 3 (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶)))
2420, 23bitr4i 267 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ 𝐹 ∈ {𝑐 ∈ (𝑅 GrpHom 𝑆) ∣ 𝑐:𝐵1-1-onto𝐶}))
251, 15, 243bitr4i 292 1 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  Grpcgrp 17422   GrpHom cghm 17657   GrpIso cgim 17699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ghm 17658  df-gim 17701
This theorem is referenced by:  gimf1o  17705  gimghm  17706  isgim2  17707  invoppggim  17790  rimgim  18736  lmimgim  19065  zzngim  19901  cygznlem3  19918  pm2mpgrpiso  20622  reefgim  24204  imasgim  37670
  Copyright terms: Public domain W3C validator