![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reefgim | Structured version Visualization version GIF version |
Description: The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
Ref | Expression |
---|---|
reefgim.1 | ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) |
Ref | Expression |
---|---|
reefgim | ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rebase 19952 | . . . 4 ⊢ ℝ = (Base‘ℝfld) | |
2 | eqid 2622 | . . . . . 6 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
3 | 2 | rpmsubg 19810 | . . . . 5 ⊢ ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
4 | reefgim.1 | . . . . . . 7 ⊢ 𝑃 = ((mulGrp‘ℂfld) ↾s ℝ+) | |
5 | cnex 10017 | . . . . . . . . 9 ⊢ ℂ ∈ V | |
6 | difexg 4808 | . . . . . . . . 9 ⊢ (ℂ ∈ V → (ℂ ∖ {0}) ∈ V) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . 8 ⊢ (ℂ ∖ {0}) ∈ V |
8 | rpcn 11841 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ) | |
9 | rpne0 11848 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
10 | eldifsn 4317 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) | |
11 | 8, 9, 10 | sylanbrc 698 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ (ℂ ∖ {0})) |
12 | 11 | ssriv 3607 | . . . . . . . 8 ⊢ ℝ+ ⊆ (ℂ ∖ {0}) |
13 | ressabs 15939 | . . . . . . . 8 ⊢ (((ℂ ∖ {0}) ∈ V ∧ ℝ+ ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+)) | |
14 | 7, 12, 13 | mp2an 708 | . . . . . . 7 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) = ((mulGrp‘ℂfld) ↾s ℝ+) |
15 | 4, 14 | eqtr4i 2647 | . . . . . 6 ⊢ 𝑃 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s ℝ+) |
16 | 15 | subgbas 17598 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → ℝ+ = (Base‘𝑃)) |
17 | 3, 16 | ax-mp 5 | . . . 4 ⊢ ℝ+ = (Base‘𝑃) |
18 | replusg 19956 | . . . 4 ⊢ + = (+g‘ℝfld) | |
19 | eqid 2622 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
20 | cnfldmul 19752 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
21 | 19, 20 | mgpplusg 18493 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
22 | 4, 21 | ressplusg 15993 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → · = (+g‘𝑃)) |
23 | 3, 22 | ax-mp 5 | . . . 4 ⊢ · = (+g‘𝑃) |
24 | resubdrg 19954 | . . . . . . 7 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
25 | 24 | simpli 474 | . . . . . 6 ⊢ ℝ ∈ (SubRing‘ℂfld) |
26 | df-refld 19951 | . . . . . . 7 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
27 | 26 | subrgring 18783 | . . . . . 6 ⊢ (ℝ ∈ (SubRing‘ℂfld) → ℝfld ∈ Ring) |
28 | 25, 27 | ax-mp 5 | . . . . 5 ⊢ ℝfld ∈ Ring |
29 | ringgrp 18552 | . . . . 5 ⊢ (ℝfld ∈ Ring → ℝfld ∈ Grp) | |
30 | 28, 29 | mp1i 13 | . . . 4 ⊢ (⊤ → ℝfld ∈ Grp) |
31 | 15 | subggrp 17597 | . . . . 5 ⊢ (ℝ+ ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑃 ∈ Grp) |
32 | 3, 31 | mp1i 13 | . . . 4 ⊢ (⊤ → 𝑃 ∈ Grp) |
33 | reeff1o 24201 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+ | |
34 | f1of 6137 | . . . . 5 ⊢ ((exp ↾ ℝ):ℝ–1-1-onto→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
35 | 33, 34 | mp1i 13 | . . . 4 ⊢ (⊤ → (exp ↾ ℝ):ℝ⟶ℝ+) |
36 | recn 10026 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
37 | recn 10026 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
38 | efadd 14824 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) | |
39 | 36, 37, 38 | syl2an 494 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (exp‘(𝑥 + 𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
40 | readdcl 10019 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
41 | fvres 6207 | . . . . . . 7 ⊢ ((𝑥 + 𝑦) ∈ ℝ → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) | |
42 | 40, 41 | syl 17 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (exp‘(𝑥 + 𝑦))) |
43 | fvres 6207 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → ((exp ↾ ℝ)‘𝑥) = (exp‘𝑥)) | |
44 | fvres 6207 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((exp ↾ ℝ)‘𝑦) = (exp‘𝑦)) | |
45 | 43, 44 | oveqan12d 6669 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦)) = ((exp‘𝑥) · (exp‘𝑦))) |
46 | 39, 42, 45 | 3eqtr4d 2666 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
47 | 46 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((exp ↾ ℝ)‘(𝑥 + 𝑦)) = (((exp ↾ ℝ)‘𝑥) · ((exp ↾ ℝ)‘𝑦))) |
48 | 1, 17, 18, 23, 30, 32, 35, 47 | isghmd 17669 | . . 3 ⊢ (⊤ → (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃)) |
49 | 48 | trud 1493 | . 2 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) |
50 | 1, 17 | isgim 17704 | . 2 ⊢ ((exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) ↔ ((exp ↾ ℝ) ∈ (ℝfld GrpHom 𝑃) ∧ (exp ↾ ℝ):ℝ–1-1-onto→ℝ+)) |
51 | 49, 33, 50 | mpbir2an 955 | 1 ⊢ (exp ↾ ℝ) ∈ (ℝfld GrpIso 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 {csn 4177 ↾ cres 5116 ⟶wf 5884 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 + caddc 9939 · cmul 9941 ℝ+crp 11832 expce 14792 Basecbs 15857 ↾s cress 15858 +gcplusg 15941 Grpcgrp 17422 SubGrpcsubg 17588 GrpHom cghm 17657 GrpIso cgim 17699 mulGrpcmgp 18489 Ringcrg 18547 DivRingcdr 18747 SubRingcsubrg 18776 ℂfldccnfld 19746 ℝfldcrefld 19950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-fac 13061 df-bc 13090 df-hash 13118 df-shft 13807 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-ef 14798 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-hom 15966 df-cco 15967 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-pt 16105 df-prds 16108 df-xrs 16162 df-qtop 16167 df-imas 16168 df-xps 16170 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-grp 17425 df-minusg 17426 df-mulg 17541 df-subg 17591 df-ghm 17658 df-gim 17701 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-unit 18642 df-invr 18672 df-dvr 18683 df-drng 18749 df-subrg 18778 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-fbas 19743 df-fg 19744 df-cnfld 19747 df-refld 19951 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cld 20823 df-ntr 20824 df-cls 20825 df-nei 20902 df-lp 20940 df-perf 20941 df-cn 21031 df-cnp 21032 df-haus 21119 df-tx 21365 df-hmeo 21558 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-xms 22125 df-ms 22126 df-tms 22127 df-cncf 22681 df-limc 23630 df-dv 23631 |
This theorem is referenced by: reloggim 24345 |
Copyright terms: Public domain | W3C validator |