![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isglbd | Structured version Visualization version GIF version |
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
isglbd.b | ⊢ 𝐵 = (Base‘𝐾) |
isglbd.l | ⊢ ≤ = (le‘𝐾) |
isglbd.g | ⊢ 𝐺 = (glb‘𝐾) |
isglbd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) |
isglbd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) |
isglbd.3 | ⊢ (𝜑 → 𝐾 ∈ CLat) |
isglbd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
isglbd.5 | ⊢ (𝜑 → 𝐻 ∈ 𝐵) |
Ref | Expression |
---|---|
isglbd | ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isglbd.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isglbd.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | isglbd.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 251 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) | |
5 | isglbd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CLat) | |
6 | isglbd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | glbval 16997 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)))) |
8 | isglbd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) | |
9 | 8 | ralrimiva 2966 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦) |
10 | isglbd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) | |
11 | 10 | 3exp 1264 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
12 | 11 | ralrimiv 2965 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) |
13 | isglbd.5 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐵) | |
14 | 1, 3 | clatglbcl2 17115 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
15 | 5, 6, 14 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
16 | 1, 2, 3, 4, 5, 15 | glbeu 16996 | . . . 4 ⊢ (𝜑 → ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) |
17 | breq1 4656 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (ℎ ≤ 𝑦 ↔ 𝐻 ≤ 𝑦)) | |
18 | 17 | ralbidv 2986 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦)) |
19 | breq2 4657 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → (𝑥 ≤ ℎ ↔ 𝑥 ≤ 𝐻)) | |
20 | 19 | imbi2d 330 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
21 | 20 | ralbidv 2986 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
22 | 18, 21 | anbi12d 747 | . . . . 5 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)))) |
23 | 22 | riota2 6633 | . . . 4 ⊢ ((𝐻 ∈ 𝐵 ∧ ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
24 | 13, 16, 23 | syl2anc 693 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
25 | 9, 12, 24 | mpbi2and 956 | . 2 ⊢ (𝜑 → (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻) |
26 | 7, 25 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃!wreu 2914 ⊆ wss 3574 class class class wbr 4653 dom cdm 5114 ‘cfv 5888 ℩crio 6610 Basecbs 15857 lecple 15948 glbcglb 16943 CLatccla 17107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-glb 16975 df-clat 17108 |
This theorem is referenced by: dihglblem2N 36583 |
Copyright terms: Public domain | W3C validator |