MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatl Structured version   Visualization version   GIF version

Theorem clatl 17116
Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011.) TODO: use eqrelrdv2 5219 to shorten proof and eliminate joindmss 17007 and meetdmss 17021?
Assertion
Ref Expression
clatl (𝐾 ∈ CLat → 𝐾 ∈ Lat)

Proof of Theorem clatl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2622 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
3 simpl 473 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
41, 2, 3joindmss 17007 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
5 relxp 5227 . . . . . . . 8 Rel ((Base‘𝐾) × (Base‘𝐾))
65a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
7 opelxp 5146 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)))
8 vex 3203 . . . . . . . . . . . . 13 𝑥 ∈ V
9 vex 3203 . . . . . . . . . . . . 13 𝑦 ∈ V
108, 9prss 4351 . . . . . . . . . . . 12 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
117, 10sylbb 209 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ⊆ (Base‘𝐾))
12 prex 4909 . . . . . . . . . . . 12 {𝑥, 𝑦} ∈ V
1312elpw 4164 . . . . . . . . . . 11 ({𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾) ↔ {𝑥, 𝑦} ⊆ (Base‘𝐾))
1411, 13sylibr 224 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾))
15 eleq2 2690 . . . . . . . . . 10 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
1614, 15syl5ibr 236 . . . . . . . . 9 (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
1716adantl 482 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
18 eqid 2622 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
198a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
209a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
2118, 2, 3, 19, 20joindef 17004 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
2217, 21sylibrd 249 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (join‘𝐾)))
236, 22relssdv 5212 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (join‘𝐾))
244, 23eqssd 3620 . . . . 5 ((𝐾 ∈ Poset ∧ dom (lub‘𝐾) = 𝒫 (Base‘𝐾)) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
2524ex 450 . . . 4 (𝐾 ∈ Poset → (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) → dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
26 eqid 2622 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
27 simpl 473 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝐾 ∈ Poset)
281, 26, 27meetdmss 17021 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) ⊆ ((Base‘𝐾) × (Base‘𝐾)))
295a1i 11 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → Rel ((Base‘𝐾) × (Base‘𝐾)))
30 eleq2 2690 . . . . . . . . . 10 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → ({𝑥, 𝑦} ∈ dom (glb‘𝐾) ↔ {𝑥, 𝑦} ∈ 𝒫 (Base‘𝐾)))
3114, 30syl5ibr 236 . . . . . . . . 9 (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3231adantl 482 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
33 eqid 2622 . . . . . . . . 9 (glb‘𝐾) = (glb‘𝐾)
348a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑥 ∈ V)
359a1i 11 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → 𝑦 ∈ V)
3633, 26, 27, 34, 35meetdef 17018 . . . . . . . 8 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾) ↔ {𝑥, 𝑦} ∈ dom (glb‘𝐾)))
3732, 36sylibrd 249 . . . . . . 7 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐾) × (Base‘𝐾)) → ⟨𝑥, 𝑦⟩ ∈ dom (meet‘𝐾)))
3829, 37relssdv 5212 . . . . . 6 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → ((Base‘𝐾) × (Base‘𝐾)) ⊆ dom (meet‘𝐾))
3928, 38eqssd 3620 . . . . 5 ((𝐾 ∈ Poset ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))
4039ex 450 . . . 4 (𝐾 ∈ Poset → (dom (glb‘𝐾) = 𝒫 (Base‘𝐾) → dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾))))
4125, 40anim12d 586 . . 3 (𝐾 ∈ Poset → ((dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾)) → (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4241imdistani 726 . 2 ((𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))) → (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
431, 18, 33isclat 17109 . 2 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom (lub‘𝐾) = 𝒫 (Base‘𝐾) ∧ dom (glb‘𝐾) = 𝒫 (Base‘𝐾))))
441, 2, 26islat 17047 . 2 (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom (join‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)) ∧ dom (meet‘𝐾) = ((Base‘𝐾) × (Base‘𝐾)))))
4542, 43, 443imtr4i 281 1 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  𝒫 cpw 4158  {cpr 4179  cop 4183   × cxp 5112  dom cdm 5114  Rel wrel 5119  cfv 5888  Basecbs 15857  Posetcpo 16940  lubclub 16942  glbcglb 16943  joincjn 16944  meetcmee 16945  Latclat 17045  CLatccla 17107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-oprab 6654  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108
This theorem is referenced by:  lubel  17122  lubun  17123  clatleglb  17126
  Copyright terms: Public domain W3C validator