MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isglbd Structured version   Visualization version   Unicode version

Theorem isglbd 17117
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
Hypotheses
Ref Expression
isglbd.b  |-  B  =  ( Base `  K
)
isglbd.l  |-  .<_  =  ( le `  K )
isglbd.g  |-  G  =  ( glb `  K
)
isglbd.1  |-  ( (
ph  /\  y  e.  S )  ->  H  .<_  y )
isglbd.2  |-  ( (
ph  /\  x  e.  B  /\  A. y  e.  S  x  .<_  y )  ->  x  .<_  H )
isglbd.3  |-  ( ph  ->  K  e.  CLat )
isglbd.4  |-  ( ph  ->  S  C_  B )
isglbd.5  |-  ( ph  ->  H  e.  B )
Assertion
Ref Expression
isglbd  |-  ( ph  ->  ( G `  S
)  =  H )
Distinct variable groups:    x, B    x, y, H    x, K, y    ph, x, y    x, S, y
Allowed substitution hints:    B( y)    G( x, y)    .<_ ( x, y)

Proof of Theorem isglbd
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 isglbd.b . . 3  |-  B  =  ( Base `  K
)
2 isglbd.l . . 3  |-  .<_  =  ( le `  K )
3 isglbd.g . . 3  |-  G  =  ( glb `  K
)
4 biid 251 . . 3  |-  ( ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) )  <->  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )
5 isglbd.3 . . 3  |-  ( ph  ->  K  e.  CLat )
6 isglbd.4 . . 3  |-  ( ph  ->  S  C_  B )
71, 2, 3, 4, 5, 6glbval 16997 . 2  |-  ( ph  ->  ( G `  S
)  =  ( iota_ h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) ) )
8 isglbd.1 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  H  .<_  y )
98ralrimiva 2966 . . 3  |-  ( ph  ->  A. y  e.  S  H  .<_  y )
10 isglbd.2 . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  A. y  e.  S  x  .<_  y )  ->  x  .<_  H )
11103exp 1264 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) ) )
1211ralrimiv 2965 . . 3  |-  ( ph  ->  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) )
13 isglbd.5 . . . 4  |-  ( ph  ->  H  e.  B )
141, 3clatglbcl2 17115 . . . . . 6  |-  ( ( K  e.  CLat  /\  S  C_  B )  ->  S  e.  dom  G )
155, 6, 14syl2anc 693 . . . . 5  |-  ( ph  ->  S  e.  dom  G
)
161, 2, 3, 4, 5, 15glbeu 16996 . . . 4  |-  ( ph  ->  E! h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )
17 breq1 4656 . . . . . . 7  |-  ( h  =  H  ->  (
h  .<_  y  <->  H  .<_  y ) )
1817ralbidv 2986 . . . . . 6  |-  ( h  =  H  ->  ( A. y  e.  S  h  .<_  y  <->  A. y  e.  S  H  .<_  y ) )
19 breq2 4657 . . . . . . . 8  |-  ( h  =  H  ->  (
x  .<_  h  <->  x  .<_  H ) )
2019imbi2d 330 . . . . . . 7  |-  ( h  =  H  ->  (
( A. y  e.  S  x  .<_  y  ->  x  .<_  h )  <->  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) ) )
2120ralbidv 2986 . . . . . 6  |-  ( h  =  H  ->  ( A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h )  <->  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) ) )
2218, 21anbi12d 747 . . . . 5  |-  ( h  =  H  ->  (
( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) )  <->  ( A. y  e.  S  H  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) ) ) )
2322riota2 6633 . . . 4  |-  ( ( H  e.  B  /\  E! h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )  ->  ( ( A. y  e.  S  H  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) )  <->  ( iota_ h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )  =  H ) )
2413, 16, 23syl2anc 693 . . 3  |-  ( ph  ->  ( ( A. y  e.  S  H  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  H ) )  <->  ( iota_ h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )  =  H ) )
259, 12, 24mpbi2and 956 . 2  |-  ( ph  ->  ( iota_ h  e.  B  ( A. y  e.  S  h  .<_  y  /\  A. x  e.  B  ( A. y  e.  S  x  .<_  y  ->  x  .<_  h ) ) )  =  H )
267, 25eqtrd 2656 1  |-  ( ph  ->  ( G `  S
)  =  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914    C_ wss 3574   class class class wbr 4653   dom cdm 5114   ` cfv 5888   iota_crio 6610   Basecbs 15857   lecple 15948   glbcglb 16943   CLatccla 17107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-glb 16975  df-clat 17108
This theorem is referenced by:  dihglblem2N  36583
  Copyright terms: Public domain W3C validator