Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihglblem2N Structured version   Visualization version   GIF version

Theorem dihglblem2N 36583
Description: The GLB of a set of lattice elements 𝑆 is the same as that of the set 𝑇 with elements of 𝑆 cut down to be under 𝑊. (Contributed by NM, 19-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dihglblem.b 𝐵 = (Base‘𝐾)
dihglblem.l = (le‘𝐾)
dihglblem.m = (meet‘𝐾)
dihglblem.g 𝐺 = (glb‘𝐾)
dihglblem.h 𝐻 = (LHyp‘𝐾)
dihglblem.t 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
Assertion
Ref Expression
dihglblem2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Distinct variable groups:   𝑣,𝑢,   𝑢,𝐵   𝑢,𝑆,𝑣   𝑢,𝑊,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑇(𝑣,𝑢)   𝐺(𝑣,𝑢)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   (𝑣,𝑢)

Proof of Theorem dihglblem2N
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihglblem.b . 2 𝐵 = (Base‘𝐾)
2 dihglblem.l . 2 = (le‘𝐾)
3 dihglblem.g . 2 𝐺 = (glb‘𝐾)
4 simpl1l 1112 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ HL)
5 hllat 34650 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
64, 5syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ Lat)
7 simp1l 1085 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ HL)
8 hlclat 34645 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝐾 ∈ CLat)
10 dihglblem.t . . . . . 6 𝑇 = {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)}
11 ssrab2 3687 . . . . . 6 {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ⊆ 𝐵
1210, 11eqsstri 3635 . . . . 5 𝑇𝐵
131, 3clatglbcl 17114 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝐺𝑇) ∈ 𝐵)
149, 12, 13sylancl 694 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑇) ∈ 𝐵)
1514adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) ∈ 𝐵)
16 simpl2 1065 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑆𝐵)
17 simpr 477 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝑆)
1816, 17sseldd 3604 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑥𝐵)
19 simpl1r 1113 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐻)
20 dihglblem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
211, 20lhpbase 35284 . . . . 5 (𝑊𝐻𝑊𝐵)
2219, 21syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝑊𝐵)
23 dihglblem.m . . . . 5 = (meet‘𝐾)
241, 23latmcl 17052 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) ∈ 𝐵)
256, 18, 22, 24syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝐵)
264, 8syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → 𝐾 ∈ CLat)
27 eqidd 2623 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) = (𝑥 𝑊))
28 oveq1 6657 . . . . . . . . 9 (𝑣 = 𝑥 → (𝑣 𝑊) = (𝑥 𝑊))
2928eqeq2d 2632 . . . . . . . 8 (𝑣 = 𝑥 → ((𝑥 𝑊) = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑥 𝑊)))
3029rspcev 3309 . . . . . . 7 ((𝑥𝑆 ∧ (𝑥 𝑊) = (𝑥 𝑊)) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
3117, 27, 30syl2anc 693 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊))
32 eqeq1 2626 . . . . . . . 8 (𝑢 = (𝑥 𝑊) → (𝑢 = (𝑣 𝑊) ↔ (𝑥 𝑊) = (𝑣 𝑊)))
3332rexbidv 3052 . . . . . . 7 (𝑢 = (𝑥 𝑊) → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3433elrab 3363 . . . . . 6 ((𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)} ↔ ((𝑥 𝑊) ∈ 𝐵 ∧ ∃𝑣𝑆 (𝑥 𝑊) = (𝑣 𝑊)))
3525, 31, 34sylanbrc 698 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ {𝑢𝐵 ∣ ∃𝑣𝑆 𝑢 = (𝑣 𝑊)})
3635, 10syl6eleqr 2712 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) ∈ 𝑇)
371, 2, 3clatglble 17125 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵 ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3812, 37mp3an2 1412 . . . 4 ((𝐾 ∈ CLat ∧ (𝑥 𝑊) ∈ 𝑇) → (𝐺𝑇) (𝑥 𝑊))
3926, 36, 38syl2anc 693 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) (𝑥 𝑊))
401, 2, 23latmle1 17076 . . . 4 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑊𝐵) → (𝑥 𝑊) 𝑥)
416, 18, 22, 40syl3anc 1326 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝑥 𝑊) 𝑥)
421, 2, 6, 15, 25, 18, 39, 41lattrd 17058 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑥𝑆) → (𝐺𝑇) 𝑥)
43 eqeq1 2626 . . . . . . . 8 (𝑢 = 𝑤 → (𝑢 = (𝑣 𝑊) ↔ 𝑤 = (𝑣 𝑊)))
4443rexbidv 3052 . . . . . . 7 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑣𝑆 𝑤 = (𝑣 𝑊)))
45 oveq1 6657 . . . . . . . . 9 (𝑣 = 𝑦 → (𝑣 𝑊) = (𝑦 𝑊))
4645eqeq2d 2632 . . . . . . . 8 (𝑣 = 𝑦 → (𝑤 = (𝑣 𝑊) ↔ 𝑤 = (𝑦 𝑊)))
4746cbvrexv 3172 . . . . . . 7 (∃𝑣𝑆 𝑤 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊))
4844, 47syl6bb 276 . . . . . 6 (𝑢 = 𝑤 → (∃𝑣𝑆 𝑢 = (𝑣 𝑊) ↔ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
4948, 10elrab2 3366 . . . . 5 (𝑤𝑇 ↔ (𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)))
50 simp3 1063 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝑆)
51 simp13 1093 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ∀𝑥𝑆 𝑧 𝑥)
52 breq2 4657 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑧 𝑥𝑧 𝑦))
5352rspcva 3307 . . . . . . . . . . 11 ((𝑦𝑆 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 𝑦)
5450, 51, 53syl2anc 693 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑦)
55 simp11l 1172 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ HL)
56553ad2ant1 1082 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ HL)
5756, 5syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ Lat)
58 simp12 1092 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧𝐵)
5956, 8syl 17 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝐾 ∈ CLat)
60 simp112 1191 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑆𝐵)
611, 3clatglbcl 17114 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
6259, 60, 61syl2anc 693 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
63 simp11r 1173 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑊𝐻)
64633ad2ant1 1082 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐻)
6564, 21syl 17 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑊𝐵)
661, 2, 3clatleglb 17126 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑆𝐵) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6759, 58, 60, 66syl3anc 1326 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝑧 (𝐺𝑆) ↔ ∀𝑥𝑆 𝑧 𝑥))
6851, 67mpbird 247 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝐺𝑆))
69 simp113 1192 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → (𝐺𝑆) 𝑊)
701, 2, 57, 58, 62, 65, 68, 69lattrd 17058 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 𝑊)
7160, 50sseldd 3604 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑦𝐵)
721, 2, 23latlem12 17078 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑧𝐵𝑦𝐵𝑊𝐵)) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7357, 58, 71, 65, 72syl13anc 1328 . . . . . . . . . 10 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → ((𝑧 𝑦𝑧 𝑊) ↔ 𝑧 (𝑦 𝑊)))
7454, 70, 73mpbi2and 956 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵𝑦𝑆) → 𝑧 (𝑦 𝑊))
75743expia 1267 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆𝑧 (𝑦 𝑊)))
76 breq2 4657 . . . . . . . . 9 (𝑤 = (𝑦 𝑊) → (𝑧 𝑤𝑧 (𝑦 𝑊)))
7776biimprcd 240 . . . . . . . 8 (𝑧 (𝑦 𝑊) → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
7875, 77syl6 35 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (𝑦𝑆 → (𝑤 = (𝑦 𝑊) → 𝑧 𝑤)))
7978rexlimdv 3030 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) ∧ 𝑤𝐵) → (∃𝑦𝑆 𝑤 = (𝑦 𝑊) → 𝑧 𝑤))
8079expimpd 629 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ((𝑤𝐵 ∧ ∃𝑦𝑆 𝑤 = (𝑦 𝑊)) → 𝑧 𝑤))
8149, 80syl5bi 232 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑤𝑇𝑧 𝑤))
8281ralrimiv 2965 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → ∀𝑤𝑇 𝑧 𝑤)
8355, 8syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝐾 ∈ CLat)
84 simp2 1062 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧𝐵)
851, 2, 3clatleglb 17126 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑧𝐵𝑇𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8612, 85mp3an3 1413 . . . 4 ((𝐾 ∈ CLat ∧ 𝑧𝐵) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8783, 84, 86syl2anc 693 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → (𝑧 (𝐺𝑇) ↔ ∀𝑤𝑇 𝑧 𝑤))
8882, 87mpbird 247 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) ∧ 𝑧𝐵 ∧ ∀𝑥𝑆 𝑧 𝑥) → 𝑧 (𝐺𝑇))
89 simp2 1062 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → 𝑆𝐵)
901, 2, 3, 42, 88, 9, 89, 14isglbd 17117 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐵 ∧ (𝐺𝑆) 𝑊) → (𝐺𝑆) = (𝐺𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  glbcglb 16943  meetcmee 16945  Latclat 17045  CLatccla 17107  HLchlt 34637  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  dihglblem3N  36584  dihglblem3aN  36585
  Copyright terms: Public domain W3C validator