Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isismty Structured version   Visualization version   GIF version

Theorem isismty 33600
Description: The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isismty ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐹,𝑦

Proof of Theorem isismty
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyval 33599 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))})
21eleq2d 2687 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))}))
3 f1of 6137 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
43adantr 481 . . . . . 6 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹:𝑋𝑌)
5 elfvdm 6220 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
6 elfvdm 6220 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 ∈ dom ∞Met)
7 fex2 7121 . . . . . 6 ((𝐹:𝑋𝑌𝑋 ∈ dom ∞Met ∧ 𝑌 ∈ dom ∞Met) → 𝐹 ∈ V)
84, 5, 6, 7syl3an 1368 . . . . 5 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V)
983expib 1268 . . . 4 ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → 𝐹 ∈ V))
109com12 32 . . 3 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V))
11 f1oeq1 6127 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto𝑌))
12 fveq1 6190 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
13 fveq1 6190 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1412, 13oveq12d 6668 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥)𝑁(𝑓𝑦)) = ((𝐹𝑥)𝑁(𝐹𝑦)))
1514eqeq2d 2632 . . . . . 6 (𝑓 = 𝐹 → ((𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
16152ralbidv 2989 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
1711, 16anbi12d 747 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦))) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1817elab3g 3357 . . 3 (((𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → 𝐹 ∈ V) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
1910, 18syl 17 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ {𝑓 ∣ (𝑓:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝑓𝑥)𝑁(𝑓𝑦)))} ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
202, 19bitrd 268 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  dom cdm 5114  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  ∞Metcxmt 19731   Ismty cismty 33597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-ismty 33598
This theorem is referenced by:  ismtycnv  33601  ismtyima  33602  ismtyhmeolem  33603  ismtybndlem  33605  ismtyres  33607  ismrer1  33637  reheibor  33638
  Copyright terms: Public domain W3C validator