| Step | Hyp | Ref
| Expression |
| 1 | | imassrn 5477 |
. . . . 5
⊢ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ ran 𝐹 |
| 2 | | isismty 33600 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
| 3 | 2 | biimp3a 1432 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 4 | 3 | adantr 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 5 | 4 | simpld 475 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 6 | | f1of 6137 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋⟶𝑌) |
| 8 | | frn 6053 |
. . . . . 6
⊢ (𝐹:𝑋⟶𝑌 → ran 𝐹 ⊆ 𝑌) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ran
𝐹 ⊆ 𝑌) |
| 10 | 1, 9 | syl5ss 3614 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ 𝑌) |
| 11 | 10 | sseld 3602 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) → 𝑥 ∈ 𝑌)) |
| 12 | | simpl2 1065 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌)) |
| 13 | | simprl 794 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑃 ∈ 𝑋) |
| 14 | | ffvelrn 6357 |
. . . . . 6
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑃 ∈ 𝑋) → (𝐹‘𝑃) ∈ 𝑌) |
| 15 | 7, 13, 14 | syl2anc 693 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹‘𝑃) ∈ 𝑌) |
| 16 | | simprr 796 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑅 ∈
ℝ*) |
| 17 | | blssm 22223 |
. . . . 5
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑅 ∈ ℝ*) → ((𝐹‘𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌) |
| 18 | 12, 15, 16, 17 | syl3anc 1326 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ((𝐹‘𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌) |
| 19 | 18 | sseld 3602 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) → 𝑥 ∈ 𝑌)) |
| 20 | | simpl1 1064 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 21 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑀 ∈ (∞Met‘𝑋)) |
| 22 | | simplrr 801 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑅 ∈
ℝ*) |
| 23 | | simplrl 800 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑃 ∈ 𝑋) |
| 24 | | f1ocnv 6149 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 25 | | f1of 6137 |
. . . . . . . . . 10
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
| 26 | 5, 24, 25 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ◡𝐹:𝑌⟶𝑋) |
| 27 | | ffvelrn 6357 |
. . . . . . . . 9
⊢ ((◡𝐹:𝑌⟶𝑋 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
| 28 | 26, 27 | sylan 488 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
| 29 | | elbl2 22195 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ (◡𝐹‘𝑥) ∈ 𝑋)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(◡𝐹‘𝑥)) < 𝑅)) |
| 30 | 21, 22, 23, 28, 29 | syl22anc 1327 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(◡𝐹‘𝑥)) < 𝑅)) |
| 31 | 4 | simprd 479 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) →
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) |
| 32 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → (𝑥𝑀𝑦) = (𝑃𝑀𝑦)) |
| 33 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑃 → (𝐹‘𝑥) = (𝐹‘𝑃)) |
| 34 | 33 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦))) |
| 35 | 32, 34 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑃 → ((𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ↔ (𝑃𝑀𝑦) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦)))) |
| 36 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (◡𝐹‘𝑥) → (𝑃𝑀𝑦) = (𝑃𝑀(◡𝐹‘𝑥))) |
| 37 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (◡𝐹‘𝑥) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑥))) |
| 38 | 37 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (◡𝐹‘𝑥) → ((𝐹‘𝑃)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 39 | 36, 38 | eqeq12d 2637 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝐹‘𝑥) → ((𝑃𝑀𝑦) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦)) ↔ (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 40 | 35, 39 | rspc2v 3322 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ 𝑋 ∧ (◡𝐹‘𝑥) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 41 | 40 | impancom 456 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ((◡𝐹‘𝑥) ∈ 𝑋 → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 42 | 13, 31, 41 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ((◡𝐹‘𝑥) ∈ 𝑋 → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 43 | 42 | imp 445 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ (◡𝐹‘𝑥) ∈ 𝑋) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 44 | 28, 43 | syldan 487 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 45 | 44 | breq1d 4663 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝑃𝑀(◡𝐹‘𝑥)) < 𝑅 ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 46 | 30, 45 | bitrd 268 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 47 | | f1of1 6136 |
. . . . . . . . 9
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) |
| 48 | 5, 47 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋–1-1→𝑌) |
| 49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋–1-1→𝑌) |
| 50 | | blssm 22223 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 51 | 20, 13, 16, 50 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 52 | 51 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 53 | | f1elima 6520 |
. . . . . . 7
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ (◡𝐹‘𝑥) ∈ 𝑋 ∧ (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅))) |
| 54 | 49, 28, 52, 53 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅))) |
| 55 | 12 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑁 ∈ (∞Met‘𝑌)) |
| 56 | 15 | adantr 481 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘𝑃) ∈ 𝑌) |
| 57 | | f1ocnvfv2 6533 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 58 | 5, 57 | sylan 488 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 59 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) |
| 60 | 58, 59 | eqeltrd 2701 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) ∈ 𝑌) |
| 61 | | elbl2 22195 |
. . . . . . 7
⊢ (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑅 ∈ ℝ*) ∧ ((𝐹‘𝑃) ∈ 𝑌 ∧ (𝐹‘(◡𝐹‘𝑥)) ∈ 𝑌)) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 62 | 55, 22, 56, 60, 61 | syl22anc 1327 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 63 | 46, 54, 62 | 3bitr4d 300 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 64 | 58 | eleq1d 2686 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)))) |
| 65 | 58 | eleq1d 2686 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 66 | 63, 64, 65 | 3bitr3d 298 |
. . . 4
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 67 | 66 | ex 450 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅)))) |
| 68 | 11, 19, 67 | pm5.21ndd 369 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 69 | 68 | eqrdv 2620 |
1
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹‘𝑃)(ball‘𝑁)𝑅)) |