Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isismty Structured version   Visualization version   Unicode version

Theorem isismty 33600
Description: The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isismty  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
Distinct variable groups:    x, M, y    x, N, y    x, X, y    x, Y, y   
x, F, y

Proof of Theorem isismty
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ismtyval 33599 . . 3  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( M  Ismty  N )  =  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( f `
 x ) N ( f `  y
) ) ) } )
21eleq2d 2687 . 2  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  F  e.  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) ) } ) )
3 f1of 6137 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
43adantr 481 . . . . . 6  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  ->  F : X --> Y )
5 elfvdm 6220 . . . . . 6  |-  ( M  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
6 elfvdm 6220 . . . . . 6  |-  ( N  e.  ( *Met `  Y )  ->  Y  e.  dom  *Met )
7 fex2 7121 . . . . . 6  |-  ( ( F : X --> Y  /\  X  e.  dom  *Met  /\  Y  e.  dom  *Met )  ->  F  e. 
_V )
84, 5, 6, 7syl3an 1368 . . . . 5  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  ->  F  e.  _V )
983expib 1268 . . . 4  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  ->  F  e.  _V )
)
109com12 32 . . 3  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  (
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  ->  F  e.  _V ) )
11 f1oeq1 6127 . . . . 5  |-  ( f  =  F  ->  (
f : X -1-1-onto-> Y  <->  F : X
-1-1-onto-> Y ) )
12 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 6190 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
1412, 13oveq12d 6668 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  x
) N ( f `
 y ) )  =  ( ( F `
 x ) N ( F `  y
) ) )
1514eqeq2d 2632 . . . . . 6  |-  ( f  =  F  ->  (
( x M y )  =  ( ( f `  x ) N ( f `  y ) )  <->  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
16152ralbidv 2989 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) )  <->  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
1711, 16anbi12d 747 . . . 4  |-  ( f  =  F  ->  (
( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) )  <-> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
1817elab3g 3357 . . 3  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  ->  F  e.  _V )  ->  ( F  e. 
{ f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( f `
 x ) N ( f `  y
) ) ) }  <-> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
1910, 18syl 17 . 2  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) ) }  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
202, 19bitrd 268 1  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   _Vcvv 3200   dom cdm 5114   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   *Metcxmt 19731    Ismty cismty 33597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-xr 10078  df-xmet 19739  df-ismty 33598
This theorem is referenced by:  ismtycnv  33601  ismtyima  33602  ismtyhmeolem  33603  ismtybndlem  33605  ismtyres  33607  ismrer1  33637  reheibor  33638
  Copyright terms: Public domain W3C validator