| Step | Hyp | Ref
| Expression |
| 1 | | lnoval.1 |
. . . 4
⊢ 𝑋 = (BaseSet‘𝑈) |
| 2 | | lnoval.2 |
. . . 4
⊢ 𝑌 = (BaseSet‘𝑊) |
| 3 | | lnoval.3 |
. . . 4
⊢ 𝐺 = ( +𝑣
‘𝑈) |
| 4 | | lnoval.4 |
. . . 4
⊢ 𝐻 = ( +𝑣
‘𝑊) |
| 5 | | lnoval.5 |
. . . 4
⊢ 𝑅 = (
·𝑠OLD ‘𝑈) |
| 6 | | lnoval.6 |
. . . 4
⊢ 𝑆 = (
·𝑠OLD ‘𝑊) |
| 7 | | lnoval.7 |
. . . 4
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lnoval 27607 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑤 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧))}) |
| 9 | 8 | eleq2d 2687 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ 𝑇 ∈ {𝑤 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧))})) |
| 10 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑤 = 𝑇 → (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = (𝑇‘((𝑥𝑅𝑦)𝐺𝑧))) |
| 11 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑤 = 𝑇 → (𝑤‘𝑦) = (𝑇‘𝑦)) |
| 12 | 11 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑤 = 𝑇 → (𝑥𝑆(𝑤‘𝑦)) = (𝑥𝑆(𝑇‘𝑦))) |
| 13 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑤 = 𝑇 → (𝑤‘𝑧) = (𝑇‘𝑧)) |
| 14 | 12, 13 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑤 = 𝑇 → ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧))) |
| 15 | 10, 14 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑤 = 𝑇 → ((𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧)) ↔ (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 16 | 15 | 2ralbidv 2989 |
. . . . 5
⊢ (𝑤 = 𝑇 → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 17 | 16 | ralbidv 2986 |
. . . 4
⊢ (𝑤 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 18 | 17 | elrab 3363 |
. . 3
⊢ (𝑇 ∈ {𝑤 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧))} ↔ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 19 | | fvex 6201 |
. . . . . 6
⊢
(BaseSet‘𝑊)
∈ V |
| 20 | 2, 19 | eqeltri 2697 |
. . . . 5
⊢ 𝑌 ∈ V |
| 21 | | fvex 6201 |
. . . . . 6
⊢
(BaseSet‘𝑈)
∈ V |
| 22 | 1, 21 | eqeltri 2697 |
. . . . 5
⊢ 𝑋 ∈ V |
| 23 | 20, 22 | elmap 7886 |
. . . 4
⊢ (𝑇 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝑇:𝑋⟶𝑌) |
| 24 | 23 | anbi1i 731 |
. . 3
⊢ ((𝑇 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧))) ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 25 | 18, 24 | bitri 264 |
. 2
⊢ (𝑇 ∈ {𝑤 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤‘𝑦))𝐻(𝑤‘𝑧))} ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧)))) |
| 26 | 9, 25 | syl6bb 276 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐿 ↔ (𝑇:𝑋⟶𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇‘𝑦))𝐻(𝑇‘𝑧))))) |