MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islno Structured version   Visualization version   GIF version

Theorem islno 27608
Description: The predicate "is a linear operator." (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
islno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑈   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐿(𝑥,𝑦,𝑧)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧)

Proof of Theorem islno
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . 4 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . 4 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . 4 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . 4 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . 4 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7lnoval 27607 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐿 = {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))})
98eleq2d 2687 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))}))
10 fveq1 6190 . . . . . . 7 (𝑤 = 𝑇 → (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)))
11 fveq1 6190 . . . . . . . . 9 (𝑤 = 𝑇 → (𝑤𝑦) = (𝑇𝑦))
1211oveq2d 6666 . . . . . . . 8 (𝑤 = 𝑇 → (𝑥𝑆(𝑤𝑦)) = (𝑥𝑆(𝑇𝑦)))
13 fveq1 6190 . . . . . . . 8 (𝑤 = 𝑇 → (𝑤𝑧) = (𝑇𝑧))
1412, 13oveq12d 6668 . . . . . . 7 (𝑤 = 𝑇 → ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))
1510, 14eqeq12d 2637 . . . . . 6 (𝑤 = 𝑇 → ((𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
16152ralbidv 2989 . . . . 5 (𝑤 = 𝑇 → (∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1716ralbidv 2986 . . . 4 (𝑤 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
1817elrab 3363 . . 3 (𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
19 fvex 6201 . . . . . 6 (BaseSet‘𝑊) ∈ V
202, 19eqeltri 2697 . . . . 5 𝑌 ∈ V
21 fvex 6201 . . . . . 6 (BaseSet‘𝑈) ∈ V
221, 21eqeltri 2697 . . . . 5 𝑋 ∈ V
2320, 22elmap 7886 . . . 4 (𝑇 ∈ (𝑌𝑚 𝑋) ↔ 𝑇:𝑋𝑌)
2423anbi1i 731 . . 3 ((𝑇 ∈ (𝑌𝑚 𝑋) ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))) ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
2518, 24bitri 264 . 2 (𝑇 ∈ {𝑤 ∈ (𝑌𝑚 𝑋) ∣ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑤‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑤𝑦))𝐻(𝑤𝑧))} ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧))))
269, 25syl6bb 276 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝑋𝑧𝑋 (𝑇‘((𝑥𝑅𝑦)𝐺𝑧)) = ((𝑥𝑆(𝑇𝑦))𝐻(𝑇𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442   LnOp clno 27595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-lno 27599
This theorem is referenced by:  lnolin  27609  lnof  27610  lnocoi  27612  0lno  27645  ipblnfi  27711
  Copyright terms: Public domain W3C validator