MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Structured version   Visualization version   GIF version

Theorem 0lno 27645
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0 𝑍 = (𝑈 0op 𝑊)
0lno.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
0lno ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)

Proof of Theorem 0lno
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2622 . . 3 (BaseSet‘𝑊) = (BaseSet‘𝑊)
3 0lno.0 . . 3 𝑍 = (𝑈 0op 𝑊)
41, 2, 30oo 27644 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊))
5 simplll 798 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
6 simpllr 799 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑊 ∈ NrmCVec)
7 simplr 792 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ ℂ)
8 simprl 794 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
9 eqid 2622 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
101, 9nvscl 27481 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
115, 7, 8, 10syl3anc 1326 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈))
12 simprr 796 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 eqid 2622 . . . . . . . 8 ( +𝑣𝑈) = ( +𝑣𝑈)
141, 13nvgcl 27475 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝑥( ·𝑠OLD𝑈)𝑦) ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
155, 11, 12, 14syl3anc 1326 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
16 eqid 2622 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
171, 16, 30oval 27643 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈)) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
185, 6, 15, 17syl3anc 1326 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = (0vec𝑊))
191, 16, 30oval 27643 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑍𝑦) = (0vec𝑊))
205, 6, 8, 19syl3anc 1326 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑦) = (0vec𝑊))
2120oveq2d 6666 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(𝑍𝑦)) = (𝑥( ·𝑠OLD𝑊)(0vec𝑊)))
221, 16, 30oval 27643 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑍𝑧) = (0vec𝑊))
235, 6, 12, 22syl3anc 1326 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍𝑧) = (0vec𝑊))
2421, 23oveq12d 6668 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)))
25 eqid 2622 . . . . . . . . 9 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
2625, 16nvsz 27493 . . . . . . . 8 ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
276, 7, 26syl2anc 693 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑥( ·𝑠OLD𝑊)(0vec𝑊)) = (0vec𝑊))
2827oveq1d 6665 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(0vec𝑊))( +𝑣𝑊)(0vec𝑊)) = ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)))
292, 16nvzcl 27489 . . . . . . . 8 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ (BaseSet‘𝑊))
306, 29syl 17 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (0vec𝑊) ∈ (BaseSet‘𝑊))
31 eqid 2622 . . . . . . . 8 ( +𝑣𝑊) = ( +𝑣𝑊)
322, 31, 16nv0rid 27490 . . . . . . 7 ((𝑊 ∈ NrmCVec ∧ (0vec𝑊) ∈ (BaseSet‘𝑊)) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
336, 30, 32syl2anc 693 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((0vec𝑊)( +𝑣𝑊)(0vec𝑊)) = (0vec𝑊))
3424, 28, 333eqtrd 2660 . . . . 5 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)) = (0vec𝑊))
3518, 34eqtr4d 2659 . . . 4 ((((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) ∧ (𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈))) → (𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3635ralrimivva 2971 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) ∧ 𝑥 ∈ ℂ) → ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
3736ralrimiva 2966 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))
38 0lno.7 . . 3 𝐿 = (𝑈 LnOp 𝑊)
391, 2, 13, 31, 9, 25, 38islno 27608 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑍𝐿 ↔ (𝑍:(BaseSet‘𝑈)⟶(BaseSet‘𝑊) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑈)∀𝑧 ∈ (BaseSet‘𝑈)(𝑍‘((𝑥( ·𝑠OLD𝑈)𝑦)( +𝑣𝑈)𝑧)) = ((𝑥( ·𝑠OLD𝑊)(𝑍𝑦))( +𝑣𝑊)(𝑍𝑧)))))
404, 37, 39mpbir2and 957 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443   LnOp clno 27595   0op c0o 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599  df-0o 27602
This theorem is referenced by:  0blo  27647  nmlno0i  27649  blocn  27662
  Copyright terms: Public domain W3C validator