| Step | Hyp | Ref
| Expression |
| 1 | | ipblnfi.9 |
. . . . . . 7
⊢ 𝑈 ∈
CPreHilOLD |
| 2 | 1 | phnvi 27671 |
. . . . . 6
⊢ 𝑈 ∈ NrmCVec |
| 3 | | ipblnfi.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
| 4 | | ipblnfi.7 |
. . . . . . 7
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 5 | 3, 4 | dipcl 27567 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
| 6 | 2, 5 | mp3an1 1411 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
| 7 | 6 | ancoms 469 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑥𝑃𝐴) ∈ ℂ) |
| 8 | | ipblnfi.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑥𝑃𝐴)) |
| 9 | 7, 8 | fmptd 6385 |
. . 3
⊢ (𝐴 ∈ 𝑋 → 𝐹:𝑋⟶ℂ) |
| 10 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
| 11 | 3, 10 | nvscl 27481 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
| 12 | 2, 11 | mp3an1 1411 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
| 13 | 12 | ad2ant2lr 784 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
| 14 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑤 ∈ 𝑋) |
| 15 | | simpll 790 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 16 | | eqid 2622 |
. . . . . . . . . 10
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
| 17 | 3, 16, 4 | dipdir 27697 |
. . . . . . . . 9
⊢ ((𝑈 ∈ CPreHilOLD
∧ ((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
| 18 | 1, 17 | mpan 706 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
| 19 | 13, 14, 15, 18 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴))) |
| 20 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑦 ∈ ℂ) |
| 21 | | simprl 794 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 22 | 3, 16, 10, 4, 1 | ipassi 27696 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴))) |
| 23 | 20, 21, 15, 22 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) = (𝑦 · (𝑧𝑃𝐴))) |
| 24 | 23 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)𝑃𝐴) + (𝑤𝑃𝐴)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
| 25 | 19, 24 | eqtrd 2656 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
| 26 | 12 | adantll 750 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ 𝑋) → (𝑦( ·𝑠OLD
‘𝑈)𝑧) ∈ 𝑋) |
| 27 | 3, 16 | nvgcl 27475 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
| 28 | 2, 27 | mp3an1 1411 |
. . . . . . . . 9
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
| 29 | 26, 28 | sylan 488 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ 𝑧 ∈ 𝑋) ∧ 𝑤 ∈ 𝑋) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
| 30 | 29 | anasss 679 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋) |
| 31 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = ((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) → (𝑥𝑃𝐴) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
| 32 | | ovex 6678 |
. . . . . . . 8
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴) ∈ V |
| 33 | 31, 8, 32 | fvmpt 6282 |
. . . . . . 7
⊢ (((𝑦(
·𝑠OLD ‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤) ∈ 𝑋 → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
| 34 | 30, 33 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = (((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)𝑃𝐴)) |
| 35 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥𝑃𝐴) = (𝑧𝑃𝐴)) |
| 36 | | ovex 6678 |
. . . . . . . . . 10
⊢ (𝑧𝑃𝐴) ∈ V |
| 37 | 35, 8, 36 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
| 38 | 37 | ad2antrl 764 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
| 39 | 38 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑦 · (𝐹‘𝑧)) = (𝑦 · (𝑧𝑃𝐴))) |
| 40 | | oveq1 6657 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥𝑃𝐴) = (𝑤𝑃𝐴)) |
| 41 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝑤𝑃𝐴) ∈ V |
| 42 | 40, 8, 41 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑋 → (𝐹‘𝑤) = (𝑤𝑃𝐴)) |
| 43 | 42 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘𝑤) = (𝑤𝑃𝐴)) |
| 44 | 39, 43 | oveq12d 6668 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤)) = ((𝑦 · (𝑧𝑃𝐴)) + (𝑤𝑃𝐴))) |
| 45 | 25, 34, 44 | 3eqtr4d 2666 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
| 46 | 45 | ralrimivva 2971 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
| 47 | 46 | ralrimiva 2966 |
. . 3
⊢ (𝐴 ∈ 𝑋 → ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))) |
| 48 | | ipblnfi.c |
. . . . 5
⊢ 𝐶 = 〈〈 + , ·
〉, abs〉 |
| 49 | 48 | cnnv 27532 |
. . . 4
⊢ 𝐶 ∈ NrmCVec |
| 50 | 48 | cnnvba 27534 |
. . . . 5
⊢ ℂ =
(BaseSet‘𝐶) |
| 51 | 48 | cnnvg 27533 |
. . . . 5
⊢ + = (
+𝑣 ‘𝐶) |
| 52 | 48 | cnnvs 27535 |
. . . . 5
⊢ ·
= ( ·𝑠OLD ‘𝐶) |
| 53 | | eqid 2622 |
. . . . 5
⊢ (𝑈 LnOp 𝐶) = (𝑈 LnOp 𝐶) |
| 54 | 3, 50, 16, 51, 10, 52, 53 | islno 27608 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec) → (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤))))) |
| 55 | 2, 49, 54 | mp2an 708 |
. . 3
⊢ (𝐹 ∈ (𝑈 LnOp 𝐶) ↔ (𝐹:𝑋⟶ℂ ∧ ∀𝑦 ∈ ℂ ∀𝑧 ∈ 𝑋 ∀𝑤 ∈ 𝑋 (𝐹‘((𝑦( ·𝑠OLD
‘𝑈)𝑧)( +𝑣 ‘𝑈)𝑤)) = ((𝑦 · (𝐹‘𝑧)) + (𝐹‘𝑤)))) |
| 56 | 9, 47, 55 | sylanbrc 698 |
. 2
⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ (𝑈 LnOp 𝐶)) |
| 57 | | eqid 2622 |
. . . 4
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
| 58 | 3, 57 | nvcl 27516 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘𝐴) ∈ ℝ) |
| 59 | 2, 58 | mpan 706 |
. 2
⊢ (𝐴 ∈ 𝑋 → ((normCV‘𝑈)‘𝐴) ∈ ℝ) |
| 60 | 3, 57, 4, 1 | sii 27709 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
| 61 | 60 | ancoms 469 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝑧𝑃𝐴)) ≤ (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
| 62 | 37 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝑧𝑃𝐴)) |
| 63 | 62 | fveq2d 6195 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝐹‘𝑧)) = (abs‘(𝑧𝑃𝐴))) |
| 64 | 59 | recnd 10068 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → ((normCV‘𝑈)‘𝐴) ∈ ℂ) |
| 65 | 3, 57 | nvcl 27516 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋) → ((normCV‘𝑈)‘𝑧) ∈ ℝ) |
| 66 | 2, 65 | mpan 706 |
. . . . . 6
⊢ (𝑧 ∈ 𝑋 → ((normCV‘𝑈)‘𝑧) ∈ ℝ) |
| 67 | 66 | recnd 10068 |
. . . . 5
⊢ (𝑧 ∈ 𝑋 → ((normCV‘𝑈)‘𝑧) ∈ ℂ) |
| 68 | | mulcom 10022 |
. . . . 5
⊢
((((normCV‘𝑈)‘𝐴) ∈ ℂ ∧
((normCV‘𝑈)‘𝑧) ∈ ℂ) →
(((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧)) = (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
| 69 | 64, 67, 68 | syl2an 494 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧)) = (((normCV‘𝑈)‘𝑧) · ((normCV‘𝑈)‘𝐴))) |
| 70 | 61, 63, 69 | 3brtr4d 4685 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) |
| 71 | 70 | ralrimiva 2966 |
. 2
⊢ (𝐴 ∈ 𝑋 → ∀𝑧 ∈ 𝑋 (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) |
| 72 | 48 | cnnvnm 27536 |
. . 3
⊢ abs =
(normCV‘𝐶) |
| 73 | | ipblnfi.l |
. . 3
⊢ 𝐵 = (𝑈 BLnOp 𝐶) |
| 74 | 3, 57, 72, 53, 73, 2, 49 | blo3i 27657 |
. 2
⊢ ((𝐹 ∈ (𝑈 LnOp 𝐶) ∧ ((normCV‘𝑈)‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ 𝑋 (abs‘(𝐹‘𝑧)) ≤ (((normCV‘𝑈)‘𝐴) · ((normCV‘𝑈)‘𝑧))) → 𝐹 ∈ 𝐵) |
| 75 | 56, 59, 71, 74 | syl3anc 1326 |
1
⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵) |