MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismir Structured version   Visualization version   GIF version

Theorem ismir 25554
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
ismir.1 (𝜑𝐶𝑃)
ismir.2 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
ismir.3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
Assertion
Ref Expression
ismir (𝜑𝐶 = (𝑀𝐵))

Proof of Theorem ismir
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirfv.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 25551 . 2 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
11 ismir.2 . . 3 (𝜑 → (𝐴 𝐶) = (𝐴 𝐵))
12 ismir.3 . . 3 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
13 ismir.1 . . . 4 (𝜑𝐶𝑃)
141, 2, 3, 6, 9, 7mirreu3 25549 . . . 4 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
15 oveq2 6658 . . . . . . 7 (𝑧 = 𝐶 → (𝐴 𝑧) = (𝐴 𝐶))
1615eqeq1d 2624 . . . . . 6 (𝑧 = 𝐶 → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 𝐶) = (𝐴 𝐵)))
17 oveq1 6657 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐼𝐵) = (𝐶𝐼𝐵))
1817eleq2d 2687 . . . . . 6 (𝑧 = 𝐶 → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ (𝐶𝐼𝐵)))
1916, 18anbi12d 747 . . . . 5 (𝑧 = 𝐶 → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵))))
2019riota2 6633 . . . 4 ((𝐶𝑃 ∧ ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2113, 14, 20syl2anc 693 . . 3 (𝜑 → (((𝐴 𝐶) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝐶𝐼𝐵)) ↔ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶))
2211, 12, 21mpbi2and 956 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) = 𝐶)
2310, 22eqtr2d 2657 1 (𝜑𝐶 = (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ∃!wreu 2914  cfv 5888  crio 6610  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirmir  25557  mireq  25560  mirinv  25561  miriso  25565  mirmir2  25569  mirauto  25579  colmid  25583  krippenlem  25585  midexlem  25587  mideulem2  25626  opphllem  25627  midcom  25674  trgcopyeulem  25697
  Copyright terms: Public domain W3C validator