Proof of Theorem colmid
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) |
| 2 | 1 | olcd 408 |
. 2
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
| 3 | | mirval.p |
. . . . 5
⊢ 𝑃 = (Base‘𝐺) |
| 4 | | mirval.d |
. . . . 5
⊢ − =
(dist‘𝐺) |
| 5 | | mirval.i |
. . . . 5
⊢ 𝐼 = (Itv‘𝐺) |
| 6 | | mirval.l |
. . . . 5
⊢ 𝐿 = (LineG‘𝐺) |
| 7 | | mirval.s |
. . . . 5
⊢ 𝑆 = (pInvG‘𝐺) |
| 8 | | mirval.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 9 | 8 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 10 | | colmid.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 11 | 10 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ 𝑃) |
| 12 | | colmid.m |
. . . . 5
⊢ 𝑀 = (𝑆‘𝑋) |
| 13 | | colmid.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 14 | 13 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 15 | | colmid.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 16 | 15 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 ∈ 𝑃) |
| 17 | | colmid.d |
. . . . . . 7
⊢ (𝜑 → (𝑋 − 𝐴) = (𝑋 − 𝐵)) |
| 18 | 17 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 − 𝐴) = (𝑋 − 𝐵)) |
| 19 | 18 | eqcomd 2628 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝑋 − 𝐵) = (𝑋 − 𝐴)) |
| 20 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐴𝐼𝐵)) |
| 21 | 3, 4, 5, 9, 14, 11, 16, 20 | tgbtwncom 25383 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝑋 ∈ (𝐵𝐼𝐴)) |
| 22 | 3, 4, 5, 6, 7, 9, 11, 12, 14, 16, 19, 21 | ismir 25554 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → 𝐵 = (𝑀‘𝐴)) |
| 23 | 22 | orcd 407 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝑋 ∈ (𝐴𝐼𝐵)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
| 24 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 25 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 ∈ 𝑃) |
| 26 | 13 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 27 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝑋 ∈ 𝑃) |
| 28 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝑋𝐼𝐵)) |
| 29 | 3, 4, 5, 24, 27, 26, 25, 28 | tgbtwncom 25383 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝑋)) |
| 30 | 3, 4, 5, 24, 26, 27 | tgbtwntriv1 25386 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 ∈ (𝐴𝐼𝑋)) |
| 31 | 3, 4, 5, 8, 10, 13, 10, 15, 17 | tgcgrcomlr 25375 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
| 32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
| 33 | 32 | eqcomd 2628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 − 𝑋) = (𝐴 − 𝑋)) |
| 34 | | eqidd 2623 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐴 − 𝑋) = (𝐴 − 𝑋)) |
| 35 | 3, 4, 5, 24, 25, 26, 27, 26, 26, 27, 29, 30, 33, 34 | tgcgrsub 25404 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 − 𝐴) = (𝐴 − 𝐴)) |
| 36 | 3, 4, 5, 24, 25, 26, 26, 35 | axtgcgrid 25362 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐵 = 𝐴) |
| 37 | 36 | eqcomd 2628 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵) |
| 38 | 37 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → 𝐴 = 𝐵) |
| 39 | 38 | olcd 408 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ∈ (𝑋𝐼𝐵)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
| 40 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐺 ∈ TarskiG) |
| 41 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 ∈ 𝑃) |
| 42 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ 𝑃) |
| 43 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝑋 ∈ 𝑃) |
| 44 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐴𝐼𝑋)) |
| 45 | 3, 4, 5, 40, 42, 43 | tgbtwntriv1 25386 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐵 ∈ (𝐵𝐼𝑋)) |
| 46 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 − 𝑋) = (𝐵 − 𝑋)) |
| 47 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 − 𝑋) = (𝐵 − 𝑋)) |
| 48 | 3, 4, 5, 40, 41, 42, 43, 42, 42, 43, 44, 45, 46, 47 | tgcgrsub 25404 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐴 − 𝐵) = (𝐵 − 𝐵)) |
| 49 | 3, 4, 5, 40, 41, 42, 42, 48 | axtgcgrid 25362 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵) |
| 50 | 49 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → 𝐴 = 𝐵) |
| 51 | 50 | olcd 408 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ≠ 𝐵) ∧ 𝐵 ∈ (𝐴𝐼𝑋)) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
| 52 | | df-ne 2795 |
. . . . 5
⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
| 53 | | colmid.c |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 54 | 53 | orcomd 403 |
. . . . . 6
⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝑋 ∈ (𝐴𝐿𝐵))) |
| 55 | 54 | orcanai 952 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵)) |
| 56 | 52, 55 | sylan2b 492 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝑋 ∈ (𝐴𝐿𝐵)) |
| 57 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 58 | 13 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 59 | 15 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 60 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 61 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝑋 ∈ 𝑃) |
| 62 | 3, 6, 5, 57, 58, 59, 60, 61 | tgellng 25448 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑋 ∈ (𝐴𝐿𝐵) ↔ (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋)))) |
| 63 | 56, 62 | mpbid 222 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑋 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝑋𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝑋))) |
| 64 | 23, 39, 51, 63 | mpjao3dan 1395 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |
| 65 | 2, 64 | pm2.61dane 2881 |
1
⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ∨ 𝐴 = 𝐵)) |