MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  krippenlem Structured version   Visualization version   GIF version

Theorem krippenlem 25585
Description: Lemma for krippen 25586. We can assume krippen.7 "without loss of generality" (Contributed by Thierry Arnoux, 12-Aug-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
krippen.m 𝑀 = (𝑆𝑋)
krippen.n 𝑁 = (𝑆𝑌)
krippen.a (𝜑𝐴𝑃)
krippen.b (𝜑𝐵𝑃)
krippen.c (𝜑𝐶𝑃)
krippen.e (𝜑𝐸𝑃)
krippen.f (𝜑𝐹𝑃)
krippen.x (𝜑𝑋𝑃)
krippen.y (𝜑𝑌𝑃)
krippen.1 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
krippen.2 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
krippen.3 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
krippen.4 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
krippen.5 (𝜑𝐵 = (𝑀𝐴))
krippen.6 (𝜑𝐹 = (𝑁𝐸))
krippen.l = (≤G‘𝐺)
krippen.7 (𝜑 → (𝐶 𝐴) (𝐶 𝐸))
Assertion
Ref Expression
krippenlem (𝜑𝐶 ∈ (𝑋𝐼𝑌))

Proof of Theorem krippenlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 krippen.1 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐸))
21adantr 481 . . 3 ((𝜑𝐸 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐸))
3 mirval.p . . . . . . 7 𝑃 = (Base‘𝐺)
4 mirval.d . . . . . . 7 = (dist‘𝐺)
5 mirval.i . . . . . . 7 𝐼 = (Itv‘𝐺)
6 mirval.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐺 ∈ TarskiG)
8 krippen.c . . . . . . . 8 (𝜑𝐶𝑃)
98adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐶𝑃)
10 krippen.a . . . . . . . 8 (𝜑𝐴𝑃)
1110adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐴𝑃)
12 krippen.b . . . . . . . 8 (𝜑𝐵𝑃)
1312adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐵𝑃)
14 krippen.3 . . . . . . . 8 (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
1514adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → (𝐶 𝐴) = (𝐶 𝐵))
16 krippen.l . . . . . . . 8 = (≤G‘𝐺)
17 krippen.7 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) (𝐶 𝐸))
1817adantr 481 . . . . . . . . 9 ((𝜑𝐸 = 𝐶) → (𝐶 𝐴) (𝐶 𝐸))
19 simpr 477 . . . . . . . . . 10 ((𝜑𝐸 = 𝐶) → 𝐸 = 𝐶)
2019oveq2d 6666 . . . . . . . . 9 ((𝜑𝐸 = 𝐶) → (𝐶 𝐸) = (𝐶 𝐶))
2118, 20breqtrd 4679 . . . . . . . 8 ((𝜑𝐸 = 𝐶) → (𝐶 𝐴) (𝐶 𝐶))
223, 4, 5, 16, 7, 9, 11, 9, 13, 21legeq 25488 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐶 = 𝐴)
233, 4, 5, 7, 9, 11, 9, 13, 15, 22tgcgreq 25377 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝐶 = 𝐵)
24 krippen.5 . . . . . . 7 (𝜑𝐵 = (𝑀𝐴))
2524adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝐵 = (𝑀𝐴))
2623, 22, 253eqtr3rd 2665 . . . . 5 ((𝜑𝐸 = 𝐶) → (𝑀𝐴) = 𝐴)
27 mirval.l . . . . . 6 𝐿 = (LineG‘𝐺)
28 mirval.s . . . . . 6 𝑆 = (pInvG‘𝐺)
29 krippen.x . . . . . . 7 (𝜑𝑋𝑃)
3029adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝑋𝑃)
31 krippen.m . . . . . 6 𝑀 = (𝑆𝑋)
323, 4, 5, 27, 28, 7, 30, 31, 11mirinv 25561 . . . . 5 ((𝜑𝐸 = 𝐶) → ((𝑀𝐴) = 𝐴𝑋 = 𝐴))
3326, 32mpbid 222 . . . 4 ((𝜑𝐸 = 𝐶) → 𝑋 = 𝐴)
34 krippen.f . . . . . . . 8 (𝜑𝐹𝑃)
3534adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐶) → 𝐹𝑃)
36 krippen.4 . . . . . . . . 9 (𝜑 → (𝐶 𝐸) = (𝐶 𝐹))
3736adantr 481 . . . . . . . 8 ((𝜑𝐸 = 𝐶) → (𝐶 𝐸) = (𝐶 𝐹))
3837, 20eqtr3d 2658 . . . . . . 7 ((𝜑𝐸 = 𝐶) → (𝐶 𝐹) = (𝐶 𝐶))
393, 4, 5, 7, 9, 35, 9, 38axtgcgrid 25362 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝐶 = 𝐹)
40 krippen.6 . . . . . . 7 (𝜑𝐹 = (𝑁𝐸))
4140adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝐹 = (𝑁𝐸))
4219, 39, 413eqtrrd 2661 . . . . 5 ((𝜑𝐸 = 𝐶) → (𝑁𝐸) = 𝐸)
43 krippen.y . . . . . . 7 (𝜑𝑌𝑃)
4443adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝑌𝑃)
45 krippen.n . . . . . 6 𝑁 = (𝑆𝑌)
46 krippen.e . . . . . . 7 (𝜑𝐸𝑃)
4746adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐶) → 𝐸𝑃)
483, 4, 5, 27, 28, 7, 44, 45, 47mirinv 25561 . . . . 5 ((𝜑𝐸 = 𝐶) → ((𝑁𝐸) = 𝐸𝑌 = 𝐸))
4942, 48mpbid 222 . . . 4 ((𝜑𝐸 = 𝐶) → 𝑌 = 𝐸)
5033, 49oveq12d 6668 . . 3 ((𝜑𝐸 = 𝐶) → (𝑋𝐼𝑌) = (𝐴𝐼𝐸))
512, 50eleqtrrd 2704 . 2 ((𝜑𝐸 = 𝐶) → 𝐶 ∈ (𝑋𝐼𝑌))
526adantr 481 . . . . . 6 ((𝜑𝐸𝐶) → 𝐺 ∈ TarskiG)
5352ad2antrr 762 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐺 ∈ TarskiG)
548adantr 481 . . . . . . . 8 ((𝜑𝐸𝐶) → 𝐶𝑃)
55 eqid 2622 . . . . . . . 8 (𝑆𝐶) = (𝑆𝐶)
563, 4, 5, 27, 28, 52, 54, 55mirf 25555 . . . . . . 7 ((𝜑𝐸𝐶) → (𝑆𝐶):𝑃𝑃)
5743adantr 481 . . . . . . 7 ((𝜑𝐸𝐶) → 𝑌𝑃)
5856, 57ffvelrnd 6360 . . . . . 6 ((𝜑𝐸𝐶) → ((𝑆𝐶)‘𝑌) ∈ 𝑃)
5958ad2antrr 762 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆𝐶)‘𝑌) ∈ 𝑃)
60 simplr 792 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞𝑃)
6154ad2antrr 762 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶𝑃)
6257ad2antrr 762 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑌𝑃)
63 simprl 794 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶))
643, 4, 5, 27, 28, 6, 8, 55, 43mirbtwn 25553 . . . . . 6 (𝜑𝐶 ∈ (((𝑆𝐶)‘𝑌)𝐼𝑌))
6564ad3antrrr 766 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (((𝑆𝐶)‘𝑌)𝐼𝑌))
663, 4, 5, 53, 59, 60, 61, 62, 63, 65tgbtwnexch3 25389 . . . 4 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (𝑞𝐼𝑌))
6729ad3antrrr 766 . . . . . 6 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑋𝑃)
6810adantr 481 . . . . . . 7 ((𝜑𝐸𝐶) → 𝐴𝑃)
6968ad2antrr 762 . . . . . 6 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐴𝑃)
7012adantr 481 . . . . . . 7 ((𝜑𝐸𝐶) → 𝐵𝑃)
7170ad2antrr 762 . . . . . 6 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵𝑃)
72 eqid 2622 . . . . . . . 8 (𝑆𝑞) = (𝑆𝑞)
7346adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → 𝐸𝑃)
7456, 73ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → ((𝑆𝐶)‘𝐸) ∈ 𝑃)
7534adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → 𝐹𝑃)
7656, 75ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → ((𝑆𝐶)‘𝐹) ∈ 𝑃)
776ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → 𝐺 ∈ TarskiG)
7810ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → 𝐴𝑃)
7974adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → ((𝑆𝐶)‘𝐸) ∈ 𝑃)
803, 4, 5, 77, 78, 79tgbtwntriv1 25386 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐴𝐼((𝑆𝐶)‘𝐸)))
81 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶)
8281oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → (𝐴𝐼((𝑆𝐶)‘𝐸)) = (𝐶𝐼((𝑆𝐶)‘𝐸)))
8380, 82eleqtrd 2703 . . . . . . . . . . . . . . . 16 (((𝜑𝐸𝐶) ∧ 𝐴 = 𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆𝐶)‘𝐸)))
846ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐺 ∈ TarskiG)
8510ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐴𝑃)
8674adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → ((𝑆𝐶)‘𝐸) ∈ 𝑃)
878ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐶𝑃)
8846ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐸𝑃)
89 simplr 792 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐸𝐶)
903, 4, 5, 6, 10, 8, 46, 1tgbtwncom 25383 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ (𝐸𝐼𝐴))
9190ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐶 ∈ (𝐸𝐼𝐴))
923, 4, 5, 27, 28, 84, 87, 55, 88mirbtwn 25553 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐸)𝐼𝐸))
933, 4, 5, 84, 86, 87, 88, 92tgbtwncom 25383 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐶 ∈ (𝐸𝐼((𝑆𝐶)‘𝐸)))
943, 5, 84, 88, 87, 85, 86, 89, 91, 93tgbtwnconn2 25471 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → (𝐴 ∈ (𝐶𝐼((𝑆𝐶)‘𝐸)) ∨ ((𝑆𝐶)‘𝐸) ∈ (𝐶𝐼𝐴)))
9517adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → (𝐶 𝐴) (𝐶 𝐸))
963, 4, 5, 27, 28, 52, 54, 55, 73mircgr 25552 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → (𝐶 ((𝑆𝐶)‘𝐸)) = (𝐶 𝐸))
9795, 96breqtrrd 4681 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸𝐶) → (𝐶 𝐴) (𝐶 ((𝑆𝐶)‘𝐸)))
9897adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → (𝐶 𝐴) (𝐶 ((𝑆𝐶)‘𝐸)))
993, 4, 5, 16, 84, 85, 86, 87, 85, 94, 98legbtwn 25489 . . . . . . . . . . . . . . . 16 (((𝜑𝐸𝐶) ∧ 𝐴𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆𝐶)‘𝐸)))
10083, 99pm2.61dane 2881 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → 𝐴 ∈ (𝐶𝐼((𝑆𝐶)‘𝐸)))
1013, 4, 5, 52, 54, 68, 74, 100tgbtwncom 25383 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → 𝐴 ∈ (((𝑆𝐶)‘𝐸)𝐼𝐶))
1026ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → 𝐺 ∈ TarskiG)
10312ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → 𝐵𝑃)
10476adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → ((𝑆𝐶)‘𝐹) ∈ 𝑃)
1053, 4, 5, 102, 103, 104tgbtwntriv1 25386 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐵𝐼((𝑆𝐶)‘𝐹)))
106 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶)
107106oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → (𝐵𝐼((𝑆𝐶)‘𝐹)) = (𝐶𝐼((𝑆𝐶)‘𝐹)))
108105, 107eleqtrd 2703 . . . . . . . . . . . . . . . 16 (((𝜑𝐸𝐶) ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐶)‘𝐹)))
1096ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐺 ∈ TarskiG)
11012ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐵𝑃)
11176adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → ((𝑆𝐶)‘𝐹) ∈ 𝑃)
1128ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐶𝑃)
11334ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐹𝑃)
1146adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐹 = 𝐶) → 𝐺 ∈ TarskiG)
1158adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐹 = 𝐶) → 𝐶𝑃)
11646adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐹 = 𝐶) → 𝐸𝑃)
11736adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐹 = 𝐶) → (𝐶 𝐸) = (𝐶 𝐹))
118 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝐹 = 𝐶) → 𝐹 = 𝐶)
119118oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝐹 = 𝐶) → (𝐶 𝐹) = (𝐶 𝐶))
120117, 119eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐹 = 𝐶) → (𝐶 𝐸) = (𝐶 𝐶))
1213, 4, 5, 114, 115, 116, 115, 120axtgcgrid 25362 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝐹 = 𝐶) → 𝐶 = 𝐸)
122121eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝐹 = 𝐶) → 𝐸 = 𝐶)
123122adantlr 751 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐸𝐶) ∧ 𝐹 = 𝐶) → 𝐸 = 𝐶)
124 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝐸𝐶) ∧ 𝐹 = 𝐶) → 𝐸𝐶)
125124neneqd 2799 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝐸𝐶) ∧ 𝐹 = 𝐶) → ¬ 𝐸 = 𝐶)
126123, 125pm2.65da 600 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐸𝐶) → ¬ 𝐹 = 𝐶)
127126neqned 2801 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → 𝐹𝐶)
128127adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐹𝐶)
129 krippen.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ (𝐵𝐼𝐹))
1303, 4, 5, 6, 12, 8, 34, 129tgbtwncom 25383 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐶 ∈ (𝐹𝐼𝐵))
131130ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐶 ∈ (𝐹𝐼𝐵))
1323, 4, 5, 27, 28, 109, 112, 55, 113mirbtwn 25553 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐹)𝐼𝐹))
1333, 4, 5, 109, 111, 112, 113, 132tgbtwncom 25383 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐶 ∈ (𝐹𝐼((𝑆𝐶)‘𝐹)))
1343, 5, 109, 113, 112, 110, 111, 128, 131, 133tgbtwnconn2 25471 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → (𝐵 ∈ (𝐶𝐼((𝑆𝐶)‘𝐹)) ∨ ((𝑆𝐶)‘𝐹) ∈ (𝐶𝐼𝐵)))
13517, 14, 363brtr3d 4684 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐶 𝐵) (𝐶 𝐹))
136135adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → (𝐶 𝐵) (𝐶 𝐹))
1373, 4, 5, 27, 28, 52, 54, 55, 75mircgr 25552 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → (𝐶 ((𝑆𝐶)‘𝐹)) = (𝐶 𝐹))
138136, 137breqtrrd 4681 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸𝐶) → (𝐶 𝐵) (𝐶 ((𝑆𝐶)‘𝐹)))
139138adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → (𝐶 𝐵) (𝐶 ((𝑆𝐶)‘𝐹)))
1403, 4, 5, 16, 109, 110, 111, 112, 110, 134, 139legbtwn 25489 . . . . . . . . . . . . . . . 16 (((𝜑𝐸𝐶) ∧ 𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐶)‘𝐹)))
141108, 140pm2.61dane 2881 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐶)‘𝐹)))
1423, 4, 5, 52, 54, 70, 76, 141tgbtwncom 25383 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → 𝐵 ∈ (((𝑆𝐶)‘𝐹)𝐼𝐶))
14336adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐸𝐶) → (𝐶 𝐸) = (𝐶 𝐹))
144143, 96, 1373eqtr4d 2666 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → (𝐶 ((𝑆𝐶)‘𝐸)) = (𝐶 ((𝑆𝐶)‘𝐹)))
1453, 4, 5, 52, 54, 74, 54, 76, 144tgcgrcomlr 25375 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝐸) 𝐶) = (((𝑆𝐶)‘𝐹) 𝐶))
14614adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → (𝐶 𝐴) = (𝐶 𝐵))
1473, 4, 5, 52, 54, 68, 54, 70, 146tgcgrcomlr 25375 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → (𝐴 𝐶) = (𝐵 𝐶))
148 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑆‘((𝑆𝐶)‘𝑌)) = (𝑆‘((𝑆𝐶)‘𝑌))
1493, 4, 5, 27, 28, 52, 58, 148, 74mircgr 25552 . . . . . . . . . . . . . . . 16 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝑌) ((𝑆‘((𝑆𝐶)‘𝑌))‘((𝑆𝐶)‘𝐸))) = (((𝑆𝐶)‘𝑌) ((𝑆𝐶)‘𝐸)))
150 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((𝑆𝐶)‘𝑌) = ((𝑆𝐶)‘𝑌)
151 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((𝑆𝐶)‘𝐸) = ((𝑆𝐶)‘𝐸)
152 eqid 2622 . . . . . . . . . . . . . . . . . 18 ((𝑆𝐶)‘𝐹) = ((𝑆𝐶)‘𝐹)
15340adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐸𝐶) → 𝐹 = (𝑁𝐸))
15445fveq1i 6192 . . . . . . . . . . . . . . . . . . 19 (𝑁𝐸) = ((𝑆𝑌)‘𝐸)
155153, 154syl6req 2673 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸𝐶) → ((𝑆𝑌)‘𝐸) = 𝐹)
1563, 4, 5, 27, 28, 52, 55, 150, 151, 152, 54, 57, 73, 75, 155mirauto 25579 . . . . . . . . . . . . . . . . 17 ((𝜑𝐸𝐶) → ((𝑆‘((𝑆𝐶)‘𝑌))‘((𝑆𝐶)‘𝐸)) = ((𝑆𝐶)‘𝐹))
157156oveq2d 6666 . . . . . . . . . . . . . . . 16 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝑌) ((𝑆‘((𝑆𝐶)‘𝑌))‘((𝑆𝐶)‘𝐸))) = (((𝑆𝐶)‘𝑌) ((𝑆𝐶)‘𝐹)))
158149, 157eqtr3d 2658 . . . . . . . . . . . . . . 15 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝑌) ((𝑆𝐶)‘𝐸)) = (((𝑆𝐶)‘𝑌) ((𝑆𝐶)‘𝐹)))
1593, 4, 5, 52, 58, 74, 58, 76, 158tgcgrcomlr 25375 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝐸) ((𝑆𝐶)‘𝑌)) = (((𝑆𝐶)‘𝐹) ((𝑆𝐶)‘𝑌)))
160 eqidd 2623 . . . . . . . . . . . . . 14 ((𝜑𝐸𝐶) → (𝐶 ((𝑆𝐶)‘𝑌)) = (𝐶 ((𝑆𝐶)‘𝑌)))
1613, 4, 5, 52, 74, 68, 54, 58, 76, 70, 54, 58, 101, 142, 145, 147, 159, 160tgifscgr 25403 . . . . . . . . . . . . 13 ((𝜑𝐸𝐶) → (𝐴 ((𝑆𝐶)‘𝑌)) = (𝐵 ((𝑆𝐶)‘𝑌)))
1623, 4, 5, 52, 68, 58, 70, 58, 161tgcgrcomlr 25375 . . . . . . . . . . . 12 ((𝜑𝐸𝐶) → (((𝑆𝐶)‘𝑌) 𝐴) = (((𝑆𝐶)‘𝑌) 𝐵))
163162ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → (((𝑆𝐶)‘𝑌) 𝐴) = (((𝑆𝐶)‘𝑌) 𝐵))
16453adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → 𝐺 ∈ TarskiG)
16559adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → ((𝑆𝐶)‘𝑌) ∈ 𝑃)
16660adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → 𝑞𝑃)
16763adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → 𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶))
168 simpr 477 . . . . . . . . . . . . . . 15 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → ((𝑆𝐶)‘𝑌) = 𝐶)
169168oveq2d 6666 . . . . . . . . . . . . . 14 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → (((𝑆𝐶)‘𝑌)𝐼((𝑆𝐶)‘𝑌)) = (((𝑆𝐶)‘𝑌)𝐼𝐶))
170167, 169eleqtrrd 2704 . . . . . . . . . . . . 13 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → 𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼((𝑆𝐶)‘𝑌)))
1713, 4, 5, 164, 165, 166, 170axtgbtwnid 25365 . . . . . . . . . . . 12 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → ((𝑆𝐶)‘𝑌) = 𝑞)
172171oveq1d 6665 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → (((𝑆𝐶)‘𝑌) 𝐴) = (𝑞 𝐴))
173171oveq1d 6665 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → (((𝑆𝐶)‘𝑌) 𝐵) = (𝑞 𝐵))
174163, 172, 1733eqtr3d 2664 . . . . . . . . . 10 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) = 𝐶) → (𝑞 𝐴) = (𝑞 𝐵))
17552ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝐺 ∈ TarskiG)
17658ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → ((𝑆𝐶)‘𝑌) ∈ 𝑃)
17754ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝐶𝑃)
17860adantr 481 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝑞𝑃)
179 eqid 2622 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
18068ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝐴𝑃)
18170ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝐵𝑃)
182 simpr 477 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → ((𝑆𝐶)‘𝑌) ≠ 𝐶)
18359adantr 481 . . . . . . . . . . . 12 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → ((𝑆𝐶)‘𝑌) ∈ 𝑃)
18463adantr 481 . . . . . . . . . . . 12 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → 𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶))
1853, 27, 5, 175, 183, 178, 177, 184btwncolg3 25452 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → (𝐶 ∈ (((𝑆𝐶)‘𝑌)𝐿𝑞) ∨ ((𝑆𝐶)‘𝑌) = 𝑞))
186162ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → (((𝑆𝐶)‘𝑌) 𝐴) = (((𝑆𝐶)‘𝑌) 𝐵))
187146ad3antrrr 766 . . . . . . . . . . 11 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → (𝐶 𝐴) = (𝐶 𝐵))
1883, 27, 5, 175, 176, 177, 178, 179, 180, 181, 4, 182, 185, 186, 187lncgr 25464 . . . . . . . . . 10 (((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) ∧ ((𝑆𝐶)‘𝑌) ≠ 𝐶) → (𝑞 𝐴) = (𝑞 𝐵))
189174, 188pm2.61dane 2881 . . . . . . . . 9 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞 𝐴) = (𝑞 𝐵))
190189eqcomd 2628 . . . . . . . 8 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞 𝐵) = (𝑞 𝐴))
191 simprr 796 . . . . . . . . 9 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (𝐴𝐼𝐵))
1923, 4, 5, 53, 69, 60, 71, 191tgbtwncom 25383 . . . . . . . 8 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 ∈ (𝐵𝐼𝐴))
1933, 4, 5, 27, 28, 53, 60, 72, 69, 71, 190, 192ismir 25554 . . . . . . 7 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵 = ((𝑆𝑞)‘𝐴))
194193eqcomd 2628 . . . . . 6 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆𝑞)‘𝐴) = 𝐵)
19524ad3antrrr 766 . . . . . . 7 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐵 = (𝑀𝐴))
19631fveq1i 6192 . . . . . . 7 (𝑀𝐴) = ((𝑆𝑋)‘𝐴)
197195, 196syl6req 2673 . . . . . 6 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → ((𝑆𝑋)‘𝐴) = 𝐵)
1983, 4, 5, 27, 28, 53, 60, 67, 69, 71, 194, 197miduniq 25580 . . . . 5 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝑞 = 𝑋)
199198oveq1d 6665 . . . 4 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → (𝑞𝐼𝑌) = (𝑋𝐼𝑌))
20066, 199eleqtrd 2703 . . 3 ((((𝜑𝐸𝐶) ∧ 𝑞𝑃) ∧ (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵))) → 𝐶 ∈ (𝑋𝐼𝑌))
2013, 4, 5, 27, 28, 52, 57, 45, 73mirbtwn 25553 . . . . . . 7 ((𝜑𝐸𝐶) → 𝑌 ∈ ((𝑁𝐸)𝐼𝐸))
202153oveq1d 6665 . . . . . . 7 ((𝜑𝐸𝐶) → (𝐹𝐼𝐸) = ((𝑁𝐸)𝐼𝐸))
203201, 202eleqtrrd 2704 . . . . . 6 ((𝜑𝐸𝐶) → 𝑌 ∈ (𝐹𝐼𝐸))
2043, 4, 5, 52, 75, 57, 73, 203tgbtwncom 25383 . . . . 5 ((𝜑𝐸𝐶) → 𝑌 ∈ (𝐸𝐼𝐹))
2053, 4, 5, 27, 28, 52, 54, 55, 73, 57, 75, 204mirbtwni 25566 . . . 4 ((𝜑𝐸𝐶) → ((𝑆𝐶)‘𝑌) ∈ (((𝑆𝐶)‘𝐸)𝐼((𝑆𝐶)‘𝐹)))
2063, 4, 5, 52, 74, 68, 54, 76, 70, 58, 101, 142, 205tgtrisegint 25394 . . 3 ((𝜑𝐸𝐶) → ∃𝑞𝑃 (𝑞 ∈ (((𝑆𝐶)‘𝑌)𝐼𝐶) ∧ 𝑞 ∈ (𝐴𝐼𝐵)))
207200, 206r19.29a 3078 . 2 ((𝜑𝐸𝐶) → 𝐶 ∈ (𝑋𝐼𝑌))
20851, 207pm2.61dane 2881 1 (𝜑𝐶 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  ≤Gcleg 25477  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548
This theorem is referenced by:  krippen  25586
  Copyright terms: Public domain W3C validator