MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   GIF version

Theorem neindisj2 20927
Description: A point 𝑃 belongs to the closure of a set 𝑆 iff every neighborhood of 𝑃 meets 𝑆. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1 𝑋 = 𝐽
Assertion
Ref Expression
neindisj2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Distinct variable groups:   𝑛,𝐽   𝑃,𝑛   𝑆,𝑛   𝑛,𝑋

Proof of Theorem neindisj2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3 𝑋 = 𝐽
21elcls 20877 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
31isneip 20909 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛))))
4 r19.29r 3073 . . . . . . . . . . 11 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5 pm3.35 611 . . . . . . . . . . . . . . . 16 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑆) ≠ ∅)
6 ssrin 3838 . . . . . . . . . . . . . . . . . 18 (𝑥𝑛 → (𝑥𝑆) ⊆ (𝑛𝑆))
7 sseq2 3627 . . . . . . . . . . . . . . . . . . 19 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) ↔ (𝑥𝑆) ⊆ ∅))
8 ss0 3974 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆) ⊆ ∅ → (𝑥𝑆) = ∅)
97, 8syl6bi 243 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑆) = ∅ → ((𝑥𝑆) ⊆ (𝑛𝑆) → (𝑥𝑆) = ∅))
106, 9syl5com 31 . . . . . . . . . . . . . . . . 17 (𝑥𝑛 → ((𝑛𝑆) = ∅ → (𝑥𝑆) = ∅))
1110necon3d 2815 . . . . . . . . . . . . . . . 16 (𝑥𝑛 → ((𝑥𝑆) ≠ ∅ → (𝑛𝑆) ≠ ∅))
125, 11syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃𝑥 ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅))
1312ex 450 . . . . . . . . . . . . . 14 (𝑃𝑥 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑥𝑛 → (𝑛𝑆) ≠ ∅)))
1413com23 86 . . . . . . . . . . . . 13 (𝑃𝑥 → (𝑥𝑛 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
1514imp31 448 . . . . . . . . . . . 12 (((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1615rexlimivw 3029 . . . . . . . . . . 11 (∃𝑥𝐽 ((𝑃𝑥𝑥𝑛) ∧ (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
174, 16syl 17 . . . . . . . . . 10 ((∃𝑥𝐽 (𝑃𝑥𝑥𝑛) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛𝑆) ≠ ∅)
1817ex 450 . . . . . . . . 9 (∃𝑥𝐽 (𝑃𝑥𝑥𝑛) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
1918adantl 482 . . . . . . . 8 ((𝑛𝑋 ∧ ∃𝑥𝐽 (𝑃𝑥𝑥𝑛)) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅))
203, 19syl6bi 243 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
21203adant2 1080 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛𝑆) ≠ ∅)))
2221com23 86 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅)))
2322imp 445 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑛𝑆) ≠ ∅))
2423ralrimiv 2965 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅)
25 opnneip 20923 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑃}))
26 ineq1 3807 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝑛𝑆) = (𝑥𝑆))
2726neeq1d 2853 . . . . . . . . . . . . . 14 (𝑛 = 𝑥 → ((𝑛𝑆) ≠ ∅ ↔ (𝑥𝑆) ≠ ∅))
2827rspccva 3308 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑥𝑆) ≠ ∅)
29 idd 24 . . . . . . . . . . . . . . 15 ((𝑃𝑋 ∧ (𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) ∧ 𝑆𝑋) → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))
30293exp 1264 . . . . . . . . . . . . . 14 (𝑃𝑋 → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → ((𝑥𝑆) ≠ ∅ → (𝑥𝑆) ≠ ∅))))
3130com14 96 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3228, 31syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ ∧ 𝑥 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
3332ex 450 . . . . . . . . . . 11 (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3433com3l 89 . . . . . . . . . 10 (𝑥 ∈ ((nei‘𝐽)‘{𝑃}) → ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3525, 34mpcom 38 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑃𝑥) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅))))
36353expia 1267 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑥 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑋 → (𝑥𝑆) ≠ ∅)))))
3736com25 99 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))))
3837ex 450 . . . . . 6 (𝐽 ∈ Top → (𝑥𝐽 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑆𝑋 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
3938com25 99 . . . . 5 (𝐽 ∈ Top → (𝑆𝑋 → (𝑃𝑋 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅ → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))))
40393imp1 1280 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → (𝑥𝐽 → (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
4140ralrimiv 2965 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
4224, 41impbida 877 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
432, 42bitrd 268 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑃})(𝑛𝑆) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  clsccl 20822  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902
This theorem is referenced by:  islp2  20949  trnei  21696  flimclsi  21782
  Copyright terms: Public domain W3C validator